Skip to main content
Log in

Compatibility, thermal, mechanical and morphological properties of cardanol based epoxidized resin modified with liquid rubber

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

An epoxy resin based on cardanol and varying content of CTBN was cured using polyamine as a hardener. The ultimate aim of the study was to modify the brittle epoxy matrix by the liquid rubber to improve toughness characteristics. FTIR of the modified was performed to understand the structural transformations taking place during the uncured and cured stage of the modified systems. Also, the structures were proposed on the basis of the results of NMR and MALDI-TOF mass spectroscopic analysis along with GPC analysis. Mechanical properties of neat as well as modified networks have been studied to observe the effect of rubber modification. The improvement in these properties indicates that the rubber-modified resin would be more durable than the pure epoxy based on cardanol. A clear-cut two-step mass loss in dynamic thermogravimetric trace of unmodified and CTBN-modified systems was observed. Modified cardanol based epoxy network displayed two phase separated morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1

Similar content being viewed by others

References

  1. Attanasi OA, Bunatti SB (1996) Cardanol—a versatile natural fine chemical largely available today. La Chim e I’Ind 78:693–696

    CAS  Google Scholar 

  2. Prabhakaran K, Narayan A, Pvithram C (2001) Cardanol as a dispersant plasticizer for an alumina/toluene tape casting slip. J Eur Cer Soc 21:2873–2878

    Article  CAS  Google Scholar 

  3. Pillai CKS, Prasad VS, Sudha JD, Bera SC, Menon ARR (1990) Polymeric resins from renewable resources II synthesis and characterization of flame retardant prepolymer from cardanol. J Appl Polym Sci 41:2487–2501

    Article  CAS  Google Scholar 

  4. Bhunia HP, Jana RN, Basak A, Lenka S, Nando GB (1998) Synthesis of polyurethane from cashew nut shell liquid (CNSL), a renewable resource. J Polym Sci Part A: Plym Chem 36:391

    Article  CAS  Google Scholar 

  5. Bhunia HP, Nando GB, Chaki TK, Basak A, Lenka S, Nayak PL (1999) Synthesis and characterization of polymers from cashewnut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. Euro Polym J 35:1381

    Article  CAS  Google Scholar 

  6. Bisanda E (1991) Sisal fibre reinforced composites. PhD Thesis, University of Bath, Department of Engineering and Applied Science

  7. Mwaikambo L (2002) Plant-based resources for sustainable composites. PhD Thesis, University of Bath, Department of Engineering and Applied Science

  8. Panasare V, Kulkarni A (1964) Azo dyes from cashew nut shell liquid derivatives. J Ind Chem Soc 41:251–255

    Google Scholar 

  9. Menon ARR, Pillai CKS, Sudha JD, Mathew AG (1985) Cashew nut shell liquid—its polymeric and other industrial products. J Sci Ind Res 44:324–338

    CAS  Google Scholar 

  10. Kinloch AJ, Reiw CK (1983) Rubber—toughened plastics advances in chemistry. Am Chem Soc Washington DC USA Ser 22:67

    Google Scholar 

  11. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science, London

    Google Scholar 

  12. Huang J, Kinloch AJ (1992) The toughness of epoxy polymer containing micro voids. Polymer 33:1330–1332

    Article  CAS  Google Scholar 

  13. Huang J, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. J Mater Sci 27:2763–2769

    Article  CAS  Google Scholar 

  14. Riew CK, Rowe EH, Siebert AR (1974) Rubber toughened thermosets: ACS meeting symposium on toughness and brittleness of plastics, division of organic coatings and plastics, Attantic city, N. J

  15. Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. Mater Sci Eng: A 443:262–269

    Article  Google Scholar 

  16. Tripathi G, Srivastava D (2011) Study on the effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) copolymer concentration on the decomposition kinetics parameters of blends of glycidyl epoxy and non-glycidyl epoxy resin. Int J Org Chem 1:105–112

    Article  CAS  Google Scholar 

  17. Yahyaie H, Ebrahimi M, Tahamin HV, Mafi ER (2013) Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Prog Org Coat 76:286–292

    Article  CAS  Google Scholar 

  18. Huang K, Zhang Y, Li M, Lian J, Yang X, Xia J (2012) Preparation of a light color cardanol-based curing agent and epoxy resin composite: cure-induced phase separation and its effect on properties. Prog Org Coat 74:240–247

    Article  CAS  Google Scholar 

  19. Ben Saleh AB, Mohd Ishak ZA, Hashim AS, Kamil WA (2009) Compatibility, mechanical, thermal, and morphological properties of epoxy resin modified with carbonyl-terminated butadiene acrylonitrile copolymer liquid rubber. J Phys Sci 20:1–12

    CAS  Google Scholar 

  20. Knop A, Schieb W (1979) Chemistry and application of phenolic resins. Springer Verlag, NewYork

    Book  Google Scholar 

  21. Devi A, Chandra K, Srivastava D (2004) Proceedings of the 14th National Thermal Analysis Symposium, Vadodra, India, p. 22

  22. Devi A, Srivastava D (2007) Studies on the blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl terminated polybutadiene (CTPB) I. Mater Sci Eng 458:336–347

    Article  Google Scholar 

  23. Urabanski J, Winkski WC, Janika K, Majewsta F, Zowall H (1977) Handbook of analysis of synthetic polymers and plastics. Ellis Horward Ltd. Pub, Chicketa

    Google Scholar 

  24. Sathiyalekshmi K (1993) Studies on structure and properties of CNSL novolac resins prepared with succinic acid as catalyst. Bull Mater Sci 16:137

    Article  CAS  Google Scholar 

  25. Bender HL, Farnham AG, Guyer JW (1949) Crystalline dehydroxy phenols, U. S. Pat. 2 464 207

  26. Sperling GR (1954) Hydrogen bonding in phenolic resin intermediate. J Am Chem Soc 76:1190–1193

    Article  Google Scholar 

  27. Mythili CV, Retna AM, Gopalkrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. Bull Mater Sci 27:235–543

    Article  CAS  Google Scholar 

  28. Tyman JHP (1979) Non-isoprenoid long-chain phenols. Chem Soc Rev 8:499

    Article  CAS  Google Scholar 

  29. Huang J, Xu M, Lin M, Lin Q, Chem Y, Chu J, Dai H, Zou Y (2005) Controlled synthesis of high-ortho-substitution phenol–formaldehyde resins. J Appl Polym Sci 97:652–658

    Article  CAS  Google Scholar 

  30. Kuriaposa AP, Manjooran SKB (2001) Bitumenous paints from refinery sludge. Surf & Coat Tech 145:132–138

    Article  Google Scholar 

  31. Yadav R, Awasthi P, Srivastava D (2009) Studies on synthesis of modified epoxidized novolac resin from renewable resource material for application in surface coating. J Appl Polym Sci 114:1471

    Article  CAS  Google Scholar 

  32. Lin-Gibson S, Baranauskas V, Riffle JS, Sorathia V (2002) Cresol novolac–epoxy networks: properties and processability. Polymer 43:7389–7398

    Article  CAS  Google Scholar 

  33. Lee H, Neville K (1982) Hand book of epoxy resins, (ed) McGraw-Hill, New York

  34. Evtushenko YM, Jvanov VM, Zaitsev BE (2003) Determination of epoxide and hydroxyl groups in epoxide resins by IR spectrometry. J Anal Chem 58:347–350

    Article  CAS  Google Scholar 

  35. Smith A (1979) Applied infrared spectroscopy. Wiley, NewYork

    Google Scholar 

  36. Horie K, Hiura H, Sawada M, Mita I, Kambe H (1970) Calorimetric investigation of polymerization reactions. III. Curing reaction of epoxide with amines. J Polym Sci A-1 8:1357–1372

    Article  CAS  Google Scholar 

  37. Rozenberg BA (1985) Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci 75:113–165

    Article  Google Scholar 

  38. Wise CW, Cook WD, Goodwin AA (2000) CTBN rubber phase precipitation in model epoxy resins. Polymer 41:4625–4633

    Article  CAS  Google Scholar 

  39. Calabrese L, Valenza A (2003) The effect of a liquid CTBN rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process. Comp Sci Tech 63:851–860

    Article  CAS  Google Scholar 

  40. Cataloni A, Bonicelli MG (2005) Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine. Thermo Acta 438:126–129

    Article  Google Scholar 

  41. Aijuan G, Guozheng L (2003) Thermal stability and kinetics analysis of rubber modified epoxy resin by high resolution thermo gravimetric analysis. J Appl Polym Sci 89:359–360

    Google Scholar 

  42. Maity T, Samanta BC, Dalai S, Banthia AK (2007) Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluations. Mat Sci Eng: A 464:38–46

    Article  Google Scholar 

  43. Kaji M, Nakahara K, Endo T (1999) Synthesis of a bifunctional epoxy monomer containing biphenyl moiety and properties of its cured polymer with phenol novolac. J Appl Polym Sci 74:690–698

    Article  CAS  Google Scholar 

  44. Sultan JN, Mc Garry FJ (1986) Effect of rubber particle size on deformation mechanism in glassy epoxy. Polym Engg Sci 13:29–34

    Article  Google Scholar 

  45. Verchere D, Sautereau H, Pasculat JP, Moschiar SM, Riccardi CC, Williams RJJ (1990) Rubber-modified epoxies. I. Influence of carboxyl-terminated butadiene-acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. J Appl Polym Sci 41:467

    Article  CAS  Google Scholar 

  46. Chan LC, Gillham JK, Kinloch AJ, Shaw SJ (1984) Rubber-modified epoxies: morphology, transitions and mechanical properties. In Riew CK, Gillham JK (eds.) vol. ACS 208, Washington, D.C: American Chemical Society, p. 274

  47. Sue HJ, Garciameitin EI, Pickelman DM (1996) In: Arands CB (ed) Polymer toughening. Marcel Dekker, New York, pp 131–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Srivastava, D. Compatibility, thermal, mechanical and morphological properties of cardanol based epoxidized resin modified with liquid rubber. Int J Plast Technol 18, 27–48 (2014). https://doi.org/10.1007/s12588-014-9072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-014-9072-1

Keywords

Navigation