Skip to main content
Log in

Climatic and tectonic evolution in the North Qaidam since the Cenozoic: Evidence from sedimentology and mineralogy

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Clay mineralogy and bulk mineral composition of Tertiary sediments in Qaidam were investigated using X-ray diffraction (XRD) and scanning electron microscopy in order to better understand regional climate change resulting from uplift of the Northeast Tibetan Plateau. Climate change in Qaidam since ∼53.5 Ma could be divided into four stages: a warm and seasonally arid climate between ∼53.5 and 40 Ma, a cold and arid climate from ∼40 to 26 Ma, a warm and humid climate between ∼26 and 13.5 Ma, and a much colder and arid climate from ∼13.5 to 2.5 Ma, respectively. The illite crystallinity and sedimentary facies suggested that uplift events took place around >52–50, ∼40-38, ∼26-15, ∼10-8, and <5 Ma in the Qaidam region, respectively. The climate in Qaidam Basin could have been controlled by global climate prior to 13.5 Ma. As the Tibetan Plateau reached a significant elevation by ∼13.5 Ma, and the climate cycles of the East Asian monsoon might add additional influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411: 62–66, doi:10.1038/35075035

    Article  Google Scholar 

  • Chamley, H., 1989. Clay Sedimentology. Springer-Verlag, Berlin, Heidelberg. 1–623

    Google Scholar 

  • Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth Science Reviews, 68(3–4): 173–196, doi:10.1016/j.earscirev.2004.05.001

    Article  Google Scholar 

  • Clark, M. K., Farley, K. A., Zheng, D. W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1–2): 78–88, doi:10.1016/j.epsl.2010.04.051

    Article  Google Scholar 

  • DeCelles, P. G., Quade, J., Kapp, P., et al., 2007. High and Dry in Central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3–4): 389–401, doi:10.1016/j.epsl.2006.11.001

    Article  Google Scholar 

  • Drits, V. A., Sakharov, B. A., Dainyak, L. G., et al., 2002. Structural and Chemical Heterogeneity of Illite-Smectites from Upper Jurassic Mudstones of East Greenland Related to Volcanic and Weathered Parent Rocks. American Mineralogist, 87(11–12): 1590–1606, doi:0003-004X/02/1112-1590

    Google Scholar 

  • Duan, Z., Hu, W., 2001. The Accumulation of Potash in a Continental Basin: The Example of the Qarhan Saline Lake, Qaidam Basin, West China. European Journal of Mineralogy, 13(6): 1223–1233, doi:10.1127/0935-1221/2001/0013-1223

    Article  Google Scholar 

  • Dupont-Nivet, G., Horton, B. K., Butler, R. F., et al., 2004. Paleogene Clockwise Tectonic Rotation of the Xining-Lanzhou Region, Northeastern Tibetan Plateau. Journal of Geophysical Research, 109: B04401, doi:10.1029/2003JB002620

    Article  Google Scholar 

  • Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., et al., 2007. Tibetan Plateau Aridification Linked to Global Cooling at the Eocene-Oligocene Transition. Nature, 445: 635–638, doi:10.1038/nature05516

    Article  Google Scholar 

  • Dupont-Nivet, G., Hoorn, C., Konert, M., 2008. Tibetan Uplift Prior to the Eocene-Oligocene Climate Transition: Evidence from Pollen Analysis of the Xining Basin. Geology, 36(12): 987–990, doi:10.1130/G25063A.1

    Article  Google Scholar 

  • Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1–2): 293–306, doi:10.1016/j.epsl.2007.03.042

    Article  Google Scholar 

  • Grim, R. E., 1968. Clay Mineralogy. McGraw-Hill, New York. 600

    Google Scholar 

  • Harris, N., 2006. The Elevation History of the Tibetan Plateau and Its Implications for the Asian Monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 4–15, doi:10.1016/j.palaeo.2006.07.009

    Article  Google Scholar 

  • Harrison, T. M., Copeland, P., Kidd, W. S., et al., 1992. Raising Tibet. Science, 255(5052): 1663–1670, doi:10.1126/science.255.5052.1663

    Article  Google Scholar 

  • Hong, H. L., Yu, N., Xiao, P., et al., 2007. Authigenic Palygorskite in Miocene Sediments in Linxia Basin, Gansu, Northwestern China. Clay Minerals, 42(1): 45–58, doi:10.1180/claymin.2007.042.1.04

    Article  Google Scholar 

  • Hong, H. L., Zhang, K. X., Li, Z. H., 2010a. Climatic and Tectonic Uplift Evolution since ∼7 Ma in Gyirong Basin, Southwestern Tibet Plateau: Clay Mineral Evidence. International Journal of Earth Sciences, 99(6): 1305–1315, doi:10.1007/s00531-009-0457-x

    Article  Google Scholar 

  • Hong, H. L., Wang, C. W., Xu, Y. M., 2010b. Paleoclimate Evolution of the Qinghai-Tibet Plateau since the Cenozoic. Earth Science-Journal of China University of Geosciences, 355(5): 728–736, doi:10.3799/dqkx.2010.087 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Jiang, R. B., Chen, X. H., Dang, Y. Q., et al., 2008. Apatite Fission Track Evidence for Two Phases Mesozoic-Cenozoic Thrust Faulting in Eastern Qaidam Basin. Chinese Journal of Geophysics, 511(1): 116–124 (in Chinese with English Abstract)

    Google Scholar 

  • Jolivet, M., Burnel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission Track Constraints. Tectonophysics, 343(1–2): 111–134, doi:10.1016/S0040-1951(01)00196-2

    Article  Google Scholar 

  • Kuhn, G., Diekmann, B., 2002. Late Quaternary Variability of Ocean Circulation in the Southeastern South Atlantic Inferred from the Terrigenous Sediment Record of a Drift Deposit in the Southern Cape Basin (ODP Site 1089). Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3–4): 287–303, doi:10.1016/S0031-0182(01)00500-4

    Article  Google Scholar 

  • Lanson, B., Sakharov, B. A., Claret, F., et al., 2009. Diagenetic Smectite-to-Illite Transition in Clay-Rich Sediments: A Reappraisal of X-Ray Diffraction Results Using the Multi-Specimen Method. American Journal of Science, 309(6): 476–516, doi:10.2475/06.2009.03

    Article  Google Scholar 

  • Li, M. H., Fang, X. M., Yi, C. L., et al., 2010. Evaporite Minerals and Geochemistry of the Upper 400 m Sediments in a Core from the Western Qaidam Basin, Tibet. Quaternary International, 218(1–2): 176–189, doi:10.1016/j.quaint.2009.12.013

    Article  Google Scholar 

  • Lu, H. J., Xiong, S. F., 2009. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3–4): 539–550, doi:10.1016/j.epsl.2009.10.016

    Article  Google Scholar 

  • Mikesell, L. R., Schaetzl, R. J., Velbel, M. A., 2004. Hornblende Etching and Quartz/Feldspar Ratios as Weathering and Soil Development Indicators in Some Michigan Soils. Quaternary Research, 62(2): 162–171, doi:10.1016/j.yqres.2004.06.006

    Article  Google Scholar 

  • Molnar, P., 2004. Late Cenozoic Increase in Accumulation Rates of Terrestrial Sediment: How Might Cimate Change Have Affected Erosion Rates? Annual Reviews of Earth Planetary Sciences, 32: 67–89, doi:10.1146/annurev.earth.32.091003.143456

    Article  Google Scholar 

  • Raymo, M. E., Ruddiman, W. F., 1992. Tectonic Forcing of Late Cenozoic Climate Change. Nature, 359: 117–122

    Article  Google Scholar 

  • Rieser, A. B., Bojar, A. V., Neubauer, F., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063–1075, doi:10.1007/s00531-008-0304-5

    Article  Google Scholar 

  • Rowley, D. B., Currie, B. S., 2006. Palaeo-Atimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439: 677–681, doi:10.1038/nature04506

    Article  Google Scholar 

  • Singer, A., 1984. The Paleoclimatic Interpretation of Clay Minerals in Sediment-A Review. Earth-Science Reviews, 21(4): 251–293, doi:10.1016/0012-8252(84)90055-2

    Article  Google Scholar 

  • Song, B. W., Zhang, K. X., Ji, J. L., et al., 2010. Palaeogence Sedimentary Evolution in the Xitieshan-Changshanliang Region, North Qaidam Basin. Sedimentary Geology and Tethyan Geology, 30(1): 1–10 (in Chinese with English Abstract)

    Google Scholar 

  • Sun, J. M., Zhang, Z. Q., 2008. Palynological Evidence for the Mid-Miocene Climatic Optimum Recorded in Cenozoic Sediments of the Tian Shan Range, Northwestern China. Global and Planetary Change, 64(1–2): 53–68, doi:10.1016/j.gloplacha.2008.09.001

    Article  Google Scholar 

  • Sun, X. J., Wang, P. X., 2005. How Old is the Asian Monsoon System?-Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3–4): 181–222, doi:10.1016/j.palaeo.2005.03.005

    Article  Google Scholar 

  • Sun, Z. M., Yang, Z. Y., Pei, J. L., et al., 2005. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau. Earth and Planetary Science Letters, 237(3–4): 635–646, doi:10.1016/j.epsl.2005.07.007

    Article  Google Scholar 

  • Wang, C. W., Hong, H. L., Song, B. W., et al., 2011. The Early-Eocene Climate Optimum (EECO) Event in Qaidam Basin, Northwest China: Clay Evidence. Clay Minerals, 46(4): 649–661, doi:10.1180/claymin.2011.046.4.649

    Article  Google Scholar 

  • Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987–4992, doi:10.1073/pnas.0703595105

    Article  Google Scholar 

  • Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatio-Temporal Famework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China: Earth Sciences, 54(1): 29–44, doi:10.1007/s11430-010-4110-0

    Article  Google Scholar 

  • Wang, J., Wang, Y. J., Liu, Z. C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1–2): 37–47, doi:10.1016/S0031-0182(99)00038-3

    Article  Google Scholar 

  • Wang, S. J., Ren, M. D., Huang, X. Z., et al., 1997. The Transverse Distribution Regularity and Its Controlling Factors of Clay Minerals in Tertiary System, Qaidam Basin. Acta Sedimentologica Sinica, 15(3): 153–157 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, X. L., Miao, X. D., 2006. Weathering History Indicated by the Luminescence Emissions in Chinese Loess and Paleosol. Quaternary Science Reviews, 25(13–14): 1719–1726, doi:10.1016/j.quascirev.2005.11.009

    Article  Google Scholar 

  • Wang, X. M., Qiu, Z. D., Li, Q., et al., 2007. Vertebrate Paleontology, Biostratigraphy, Geochronology, and Paleoenvironment of Qaidam Basin in Northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3–4): 363–385, doi:10.1016/j.palaeo.2007.06.007

    Article  Google Scholar 

  • Warr, L. N., Rice, A. H. N., 1994. Interlaboratory Standardization and Calibration of Day Mineral Crystallinity and Crystallite Size Data. Journal of Metamorphic Geology, 12(2): 141–152, doi:10.1111/j.1525-1314.1994.tb00010.x

    Article  Google Scholar 

  • Wright, J. D., Miller, K. G., Fairbanks, R. G., 1992. Early and Middle Miocene Stable Isotopes: Implications for Deepwater Circulation and Climate. Paleoceanography, 7(3): 357–389, doi:10.1029/92PA00760

    Article  Google Scholar 

  • Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A preliminary Synthesis. Tectonophysics, 488(1–4): 293–325, doi:10.1016/j.tecto.2009.06.002

    Article  Google Scholar 

  • Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7–8): 813–846, doi:10.1130/B26180.1

    Article  Google Scholar 

  • Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257–1295, doi:10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2

    Article  Google Scholar 

  • Zachos, J. C., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686–693, doi:10.1126/science.1059412

    Article  Google Scholar 

  • Zhang, K. X., Wang, G. C., Cao, K., et al., 2008. Cenozoic Sedimentary Records and Geochronological Constraints of Differential Uplift of the Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 51(11): 1658–1672, doi:10.1007/s11430-008-0132-2

    Article  Google Scholar 

  • Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010a. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China: Earth Sciences, 53(9): 1271–1294, doi:10.1007/s11430-010-4048-2

    Article  Google Scholar 

  • Zhang, K. X., Wang, G. C., Luo, M. S., et al., 2010b. Evolution of Tectonic Lithofacies Paleogeography of Cenozoic of Qinghai-Tibet Plateau and Its Response to Uplift of the Plateau. Earth Science-Journal of China University of Geosciences, 35(5): 697–712, doi:10.3799/dqkx.2010.085 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhang, W. L., 2006. The High Precise Cenozoic Magnetostratigraphy of the Qaidam Basin and Uplift of the Northern Tibetan Plateau: [Dissertation]. Lanzhou University, Lanzhou. 95–105 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ∼8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1–2): 198–208, doi:10.1016/j.epsl.2006.05.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Li  (李朝晖).

Additional information

This study was supported by the China Geological Survey (No. 1212011121261), the National Natural Science Foundation of China (Nos. 41272053 and 41072030), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110145110001) and the Independent Research Project Foundation of State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan (No. GBL11307).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Hong, H., Li, Z. et al. Climatic and tectonic evolution in the North Qaidam since the Cenozoic: Evidence from sedimentology and mineralogy. J. Earth Sci. 24, 314–327 (2013). https://doi.org/10.1007/s12583-013-0332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-013-0332-3

Key Words

Navigation