Skip to main content
Log in

Taiwan’ Chi-Chi earthquake precursor detection using nonlinear principal component analysis to multi-channel total electron content records

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan’s Chi-Chi earthquake of 21 September 1999 (LT) (M w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N–26°N Lat. and 120°E–122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (>0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA. Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bolt, B. A., 1999. Seiamology: Resources for Teachers. Earthquake (4th Edition). W. H. Freeman and Company, New York. 366

    Google Scholar 

  • Chen, Y. I., Liu, J. Y., Tsai, Y. B., et al., 2004, Statistical Tests for Pre-Earthquake Ionospheric Anomaly. TAO, 15(3): 385–396

    Google Scholar 

  • Cybenko, G., 1989. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signal & Sys., 2: 303–314

    Article  Google Scholar 

  • Davies, K., 1990. Ionospheric Radio. Peter Peregrinus Ltd., London. 580

    Book  Google Scholar 

  • Freund, F. T., 2000. Time-Resolved Study of Charge Generation and Propagation in Igneous Rocks. J. Geophys. Res., 105: 11001–11019

    Article  Google Scholar 

  • Freund, F. T., Kulahci, I. C., Gyr, G., et al., 2009. Air Ionization at Rock Surfaces and Pre-Earthquake Signals. J. Atmos. Sol. Terr. Phys., 71(17–18): 1824–1834, doi:10.1016/j.jastp.2009.07.013

    Article  Google Scholar 

  • Garcia, R., Crespon, F., Ducic, V., et al., 2005. Three-Dimensional Ionospheric Tomography of Post-Seismic Perturbations Produced by the Denali Earthquake from GPS Data. Geophys. J. Int., 163: 1049–1064, doi:0.1111/j.1365-246X.2005.02775.x

    Article  Google Scholar 

  • Hayakawa, M., 2007. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes. Sensors, 7(7): 1141–1158, doi:10.3390/s7071141

    Article  Google Scholar 

  • Hegai, V. V., Kim, V. P., Liu, J. Y., 2006. The Ionospheric Effect of Atmospheric Gravity Waves Excited Prior to Strong Earthquake. Advance in Space Research, 37: 653–659

    Article  Google Scholar 

  • Heki, K., Otsuka, Y., Choosakul, N., et al., 2006. Detection of Ruptures of Andaman Fault Segments in the 2004 Great Sumatra Earthquake with Coseismic Ionospheric Disturbances. J. Geophys. Res., 111(B09313): 11, doi:10.1029/2005JB004202, 2006

    Google Scholar 

  • Hsiao, C. C., Liu, J. Y., Oyama, K. I., et al., 2010. Seismo-Ionospheric Precursor of the 2008 M w 7.9 Wenchuan Earthquake Observed by FORMOSAT-3/COSMIC. GPS Solutions, 14(1): 83–89, doi:10.1007/s10291-009-0129-0

    Article  Google Scholar 

  • Jhuang, H. K., Ho, Y. Y., Kakinami, Y., et al., 2010. Seismo-Ionospheric Anomalies of the GPS-TEC Appear before the 12 May 2008 Magnitude 8.0 Wenchuan Earthquake. Int. J. Remote Sens., 31(13): 3579–3587, doi:10.1080/01431161003727796

    Article  Google Scholar 

  • Kakinami, Y., Liu, J. Y., Tsai, L. C., et al., 2010. Ionospheric Electron Content Anomalies Detected by a FORMOSAT-3/COSMIC Empirical Model before and after the Wenchuan Earthquake. Int. J. Remote Sens., 31(13): 3571–3578, doi:10.1080/01431161003727788

    Article  Google Scholar 

  • Kramer, M. A., 1991. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE Journal, 37(2): 233–243

    Article  Google Scholar 

  • Li, J., Shen, W., 2011. Investigation of the Co-Seismic Gravity Field Variations Caused by the 2004 Sumatra-Andaman Earthquake Using Monthly GRACE Data. Journal of Earth Science, 22(2): 280–291, doi:10.1007/s12583-011-0181-x

    Article  Google Scholar 

  • Lin, J. W., 2010a. Ionospheric Total Electron Content (TEC) Anomalies Associated with Earthquakes through Karhunen-Loéve Transform (KLT). Terr. Atmos. Ocean. Sci., 21(2): 253–265, doi:10.3319/TAO.2009.06.11.01(T)

    Article  Google Scholar 

  • Lin, J. W., 2010b. Two-Dimensional Ionospheric Total Electron Content Map (TEC) Seismo-Ionospheric Anomalies through Image Processing Using Principal Component Analysis. Advances in Space Research, 45: 1301–1310, doi:10.1016/j.asr.2010.01.029

    Article  Google Scholar 

  • Lin, J. W., 2012. Potential Reasons for Ionospheric Anomalies Immediately Prior to China’s Wenchuan Earthquake on 12 May 2008 Detected by Nonlinear Principal Component Analysis. International Journal of Applied Earth Observations and Geoinformation, 14: 178–191, doi:10.1016/j.jag.2011.09.011

    Article  Google Scholar 

  • Liperovskaya, E. V., Meister, C. V., Parrot, M., et al., 2006. On Es-Spread Effects in the Ionosphere Connected to Earthquakes. Natural Hazard and Earth System Sciences, 6(5): 741–744

    Article  Google Scholar 

  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., et al., 2006. A Statistical Investigation of Pre-Earthquake Ionospheric Anomaly. J. Geophys. Res., 111(A05304): 5, doi:10.1029/2005JA 011333

    Google Scholar 

  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., et al., 2001. Variations of Ionospheric Total Electron Content during the Chi-Chi Earthquake. Geophysical Research Letters, 28(7): 1383–1386

    Article  Google Scholar 

  • Liu, Z. Z., Gao, Y., 2004. Ionospheric TEC Predictions over a Local Area GPS Reference Network. GPS Solutions, 8(1): 23–29, doi:10.1007/s10291-004-0082-x

    Article  Google Scholar 

  • Lorne, B., Perrier, F., Avouac, J. P., 1999. Streaming Potential Measurements 2. Relationship between Electrical and Hydraulic Flow Patterns from Rock Samples during Deformation. J. Geophys. Res., 104(B8): 17879–17896, doi:10. 1029/1999JB900155

    Article  Google Scholar 

  • Nishihashi, M., Hattori, K., Jhuang, H. K., et al., 2009, Possible Spatial Extent of Ionospheric GPS-TEC and NmF2 Anomalies Related to the 1999 Chi-Chi and Chia-Yi Earthquakes in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 20: 779–789

    Article  Google Scholar 

  • Pulinets, S. A., 2004. Ionospheric Precursors of Earthquakes: Recent Advances in Theory and Practical Applications. TAO, 15(3): 413–435

    Google Scholar 

  • Pulinets, S., Boyarchuk, K., 2004. Ionospheric Precursors of Earthquakes. Springer-Verlag, Berlin, Heidelberg. 315

  • Pulinets, S. A., Gaivoronska, T. B., Leyva Contreras, A., et al., 2004. Correlation Analysis Technique Revealing Ionospheric Precursors of Earthquakes. Natural Hazard and Earth System Sciences, 4: 697–702

    Article  Google Scholar 

  • Shen, W., Wang, D., Hwang, C., 2011. Anomalous Signals Prior to Wenchuan Earthquake Detected by Superconducting Gravimeter and Broadband Seismometers Records. Journal of Earth Science, 22(5): 640–651, doi:10.1007/s12583-011-0215-4

    Article  Google Scholar 

  • Tsai, Y. B., Liu, J. Y., Ma, K. F., et al., 2006. Precursory Phenomena Associated with 1999 Chi-Chi Earthquake in Taiwan as Identified under the iSTEP Program. Phys. Chem. Earth, 31: 365–377, doi:10.1016/j.pce.2006.02.035

    Article  Google Scholar 

  • Uyeda, S., Kamogawa, M., Tanaka, H., 2009. Analysis of Electrical Activity and Seismicity in the Natural Time Domain for the Volcanic-Seismic Swarm Activity in 2000 in the Izu Island Region. Japan J. Geophys. Res., 114(B02310): 10, doi:10.1029/2007JB005332

    Google Scholar 

  • Varotsos, P., Alexopoulos, K., 1984a. Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes. Tectonophysics, 110: 73–98

    Article  Google Scholar 

  • Varotsos, P., Alexopoulos, K., 1984b. Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes, II. Determination of Epicenter and Magnitude. Tectonophysics, 110(1–2): 99–125

    Article  Google Scholar 

  • Varotsos, P., Lazaridou, M., 1991. Latest Aspects of Earthquake Prediction in Greece Based on Seismic Electric Signals. Tectonophysics, 188: 321–347

    Article  Google Scholar 

  • Varotsos, P., Sarlis, N., Lazaridou, M., et al., 1998. Transmission of Stress Induced Electric Signals in Dielectric Media. J. Appl. Phys., 83(1): 60–70, doi:10.1063/1.366702

    Article  Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., Skordas, E. S., 2002. Long-Range Correlations in the Electric Signals that Precede Rupture. Phys. Rev. E, 66(011902), doi:10.1103/PhysRevE.66.011902

    Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2005. Natural Entropy Fluctuations Discriminate Similar Looking Electric Signals Emitted from Systems of Different Dynamics. Phys. Rev. E, 71(011110): 11, doi:10.1103/PhysRevE.71.011110

    Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2006a. Entropy of Seismic Electric Signals: Analysis in Natural Time under Time Reversal. Phys. Rev. E, 73(031114): 8, doi:10.1103/PhysRevE.73.031114

    Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2006b. Attempt to Distinguish Long-Range Temporal Correlations from the Statistics of the Increments by Natural Time Analysis. Phys. Rev. E, 74(021123), doi:10.1103/Phys RevE.74.021123

    Google Scholar 

  • Voitov, G. I., Dobrovolsky, I. P., 1994. Chemical and Isotopic-Carbon Instabilities of the Native Gas Flows in Seismically Active Regions. Izvestiya Earth Science, 3: 20–31

    Google Scholar 

  • Yen, H. Y., Chen, C. H., Yeh, Y. H., et al., 2004. Geomagnetic Fluctuations during the 1999 Chi-Chi Earthquake in Taiwan. Earth Planets Space, 56: 39–45

    Google Scholar 

  • Yue, L. F., Suppe, J., Hung, J. H., 2005. Structural Geology of a Classic Thrust Belt Earthquake: The 1999 Chi-Chi Earthquake Taiwan (M w=7.6). Journal of Structural Geology, 27(11): 2058–2083, doi:10.1016/j.jsg.2005.05.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Woei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JW. Taiwan’ Chi-Chi earthquake precursor detection using nonlinear principal component analysis to multi-channel total electron content records. J. Earth Sci. 24, 244–253 (2013). https://doi.org/10.1007/s12583-013-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-013-0325-2

Key Words

Navigation