Skip to main content
Log in

Influences of lower-mantle properties on the formation of asthenosphere in oceanic upper mantle

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelling. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upwellings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ammann, M. W., Brodholt, J. P., Wookey, J., et al., 2010. First-Principles Constraints on Diffusion in Lower Mantle Minerals and a Weak D” Layer. Nature, 465(7297): 462–465

    Article  Google Scholar 

  • Bina, C. R., Helffrich, G., 1994. Phase Transitions Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography. J. Geophys. Res., 99(B8): 15853–15860

    Article  Google Scholar 

  • Bottinga, Y., Allegre C. J., 1973. Thermal Aspects of Seafloor Spreading and the Nature of the Oceanic Crust. Tectonophysics, 18(1–2): 1–17

    Article  Google Scholar 

  • Čadek, O., van der Berg, A. P., 1998. Radial Profiles of Temperature and Viscosity in the Earth’s Mantle Inferred from the Geoid and Lateral Seismic Structure. Earth Planet. Sci. Lett., 164(3–4): 607–615

    Google Scholar 

  • Cao, Q., Wang, P., van der Hilst, R. D., et al., 2010a. Imaging the Upper Mantle Transition Zone with a Generalized Radon Transform of SS Precursors. Phys. Earth Planet. Inter., 180(1–2): 80–91

    Article  Google Scholar 

  • Cao, Q., van der Hilst, R. D., de Hoop, M. V., et al., 2010b. Complex Plume Dynamics in the Transition Zone underneath the Hawaii Hotspot: Seismic Imaging Results. AGU Fall Meeting

  • Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophys. Res. Lett., 19(19): 1983–1986

    Article  Google Scholar 

  • Daly, R. A., 1914. Igneous Rocks and Their Origin. McGraw-Hill, New York. 563

    Google Scholar 

  • Davies, G. F., 1999. Dynamic Earth. Cambridge University Press, Cambridge. 458

    Book  Google Scholar 

  • de Koker, N., 2010. Thermal Conductivity of MgO Periclase at High Pressure: Implications for the D” Region. Earth Planet. Sci. Lett., 292(3–4): 392–398

    Article  Google Scholar 

  • Dixon, J. E., Dixon, T. H., Bell, D. R., et al., 2004. Lateral Variation in Upper Mantle Viscosity: Role of Water. Earth Planet. Sci. Lett., 222(2): 451–467

    Article  Google Scholar 

  • Elsasser, W. M., 1969. Convection and Stress Propagation in the Upper Mantle. In: Runcorn, S. K., ed., The Application of Modern Physics to the Earth and Planetary Interiors. Wiley, New York. 223–246

    Google Scholar 

  • Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049–1056

    Article  Google Scholar 

  • Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth’s Lower Mantle. Phys. Earth Planet. Inter., 180(3–4): 148–153

    Article  Google Scholar 

  • Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Phys. Earth Planet. Inter., 77(3–4): 205–223

    Article  Google Scholar 

  • Hanyk, L., Moser, J., Yuen, D. A., et al., 1995. Time-Domain Approach for the Transient Responses in Stratified Viscoelastic Earth Models. Geophys. Res. Lett., 22(10): 1285–1288

    Article  Google Scholar 

  • Hernlund, J. W., Thomas, C., Tackley, P. J., 2005. A Doubling of the Post-Perovskite Phase Boundary and Structure of the Earth’s Lowermost Mantle. Nature, 434(7035): 882–886

    Article  Google Scholar 

  • Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. Proc. Natl. Acad. Sci., 104(22): 9192–9197

    Article  Google Scholar 

  • Hofmeister, A. M., 2008. Inference of High Thermal Transport in the Lower Mantle from Laser-Flash Experiments and the Damped Harmonic Oscillator Model. Phys. Earth Planet. Inter., 170(3–4): 201–206

    Article  Google Scholar 

  • Hoink, T., Lenardic, A., 2008. Three-Dimensional Mantle Convection Simulations with a Low-Viscosity Asthenosphere and the Relationship between Heat Flow and the Horizontal Length Scale of Convection. Geophys. Res. Lett., 35(10): L10304

    Article  Google Scholar 

  • Huettig, C., 2008. Scaling Laws for Internally Heated Mantle Convection: [Dissertation]. Westfaelischen Wilhelms-Universitaet, Muenster

    Google Scholar 

  • Huettig, C., Stemmer, K., 2008. Finite Volume Discretization for Dynamic Viscosities on Voronoi Grids. Phys. Earth Planet. Inter., 171(1–4): 137–146

    Article  Google Scholar 

  • Hunt, S. A., Weidner, D. J., Li, L., et al., 2009. Weakening of Calcium Iridate during Its Transformation from Perovskite to Post-Perovskite. Nature Geosci., 2(11): 794–797

    Article  Google Scholar 

  • Karato, S. I., 1986. Does Partial Melting Reduce the Creep Strength of the Upper Mantle? Nature, 319(6051): 309–310

    Article  Google Scholar 

  • Karato, S. I., 2008. Insights into the Nature of Plume-Asthenosphere from Central Pacific Geophysical Anomalies. Earth Planet. Sci. Lett., 274(1–2): 234–240

    Article  Google Scholar 

  • Karato, S. I., 2010. The Influence of Anisotropic Diffusion on the High-Temperature Creep of a Polycrystalline Aggregate. Phys. Earth Planet. Inter., 183(3–4): 468–472

    Article  Google Scholar 

  • Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. P-V-T Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophys. Res. Lett., 36: L01305

    Article  Google Scholar 

  • Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci., 106(52): 22119–22123

    Article  Google Scholar 

  • King, S. D., 2009. On Topography and Geoid from 2-D Stagnant-Lid Convection Calculations. Geochem., Geophys., Geosyst., 10: Q03002

    Article  Google Scholar 

  • King, S. D., Lee, C., Van-Keken, P. E., et al., 2010. A Community Benchmark for 2D Cartesian Compressible Convection in the Earth’s Mantle. Geophys. J. Int., 180(1): 73–87

    Article  Google Scholar 

  • Leitch, A. M., Yuen, D. A., Sewell, G., 1991. Mantle Convection with Internal Heating and Pressure-Dependent Thermal Expansivity. Earth Planet. Sci. Lett., 102(2): 213–232

    Article  Google Scholar 

  • Maruyama, S., 1994. Plume Tectonics. J. Geol. Soc. Japan, 100: 24–49

    Google Scholar 

  • Matyska, C., Yuen, D. A., 2006. Lower Mantle Dynamics with the Post-Perovskite Phase Change, Radiative Thermal Conductivity, Termperature and Depth-Dependent Viscosity. Phys. Earth Planet. Inter., 154(2): 196–207

    Article  Google Scholar 

  • Matyska, C., Yuen, D. A., 2007. Lower Mantle Material Properties and Convection Models of Multiscale Plumes. In: Fougler, G. T., Jurdy, D. M., eds., Plates, Plumes and Planetary Processes. Geological Society of America Special Paper, 137–163

  • Mitrovica, J. X., Forte, A. M., 2004. A New Inference of Mantle Viscosity Based upon Joint Inversion of Convection and Glacial Isostatic Adjustment Data. Earth Planet. Sci. Lett., 225(1–2): 177–189

    Article  Google Scholar 

  • Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigations of 2D Convection with Extremely Large Viscosity Variations. Phys. Fluids, 7: 2154–2162

    Article  Google Scholar 

  • Nakagawa, T., Tackley, P. J., 2004. Effects of a Perovskite-Post Perovskite Phase Change near Core-Mantle Boundary in Compressible Mantle Convection. Geophys. Res. Lett., 31(16): L16611

    Article  Google Scholar 

  • Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth Planet. Sci. Lett., 296(3–4): 403–412

    Article  Google Scholar 

  • O’Farrell, K. A., Lowman, J. P., 2010. Emulating the Thermal Structure of Spherical Shell Convection in Plane-Layer Geometry Mantle Convection Models. Phys. Earth Planet. Inter., 182(1–2): 73–84

    Article  Google Scholar 

  • Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earth’s D” Layer. Nature, 430(6998): 445–448

    Article  Google Scholar 

  • Oganov, A. R., Ono, S., 2005. The High Pressure Phase of Alumina and Implications for Earth’s D” Layer. Proc. Natl. Acad. Sci., 102(31): 10828–10831

    Article  Google Scholar 

  • Ohta, K., 2010. Electrical and Thermal Conductivity of the Earth’s Lower Mantle: [Dissertation]. Tokyo Institute of Technology, Tokyo

    Google Scholar 

  • Oldenbur, D. W., Brune, J. N., 1972. Ridge Transform Fault Spreading Pattern in Freezing Wax. Science, 178(4058): 301–304

    Article  Google Scholar 

  • Parmentier, E. M., 2007. The Dynamics and Convective Evolution of the Oceanic Upper Mantle. In: Schubert, G., Bercovici, D., eds., Treatise on Geophysics. Cambridge University Press, Cambridge. 7: 305–324

    Chapter  Google Scholar 

  • Poirier, J. P., 1991. Introduction to the Physics of the Earth’s Interior. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricard, Y., Bai, W. M., 1991. Inferring Viscosity and the 3-D Density Structure of the Mantle from Geoid, Topography and Plate Velocities. Geophys. J. Int., 105(3): 561–571

    Article  Google Scholar 

  • Richards, M. A., Yang, W. S., Baumgardner, J. R., et al., 2001. Role of a Low-Viscosity Zone in Stabilizing Plate Tectonics: Implications for Comparative Terrestrial Planetology. Geochem., Geophys., Geosyst., 2(8), doi: 10.1029/2000GC000115

  • Richter, F., 1973. Finite Amplitude Convection through a Phase Boundary. Geophys. J. R. Astron. Soc., 35(1–3): 265–276

    Google Scholar 

  • Schenk, O., Gartner, K., Fichtner, W., 2000. Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1): 158–176

    Article  Google Scholar 

  • Schubert, G., Froidevaux, C., Yuen, D. A., 1976. Oceanic Lithosphere and Asthenosphere: Thermal and Mechanical Structure. J. Geophys. Res., 81(20): 3525–3540

    Article  Google Scholar 

  • Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge. 940

    Book  Google Scholar 

  • Spiegelman, M., Katz, R. F., 2006. A Semi-Lagrangian Crank-Nicolson Algorithm for the Numerical Solution of Advection-Diffusion Problems. Geochem., Geophys., Geosyst., 7: Q04014

    Article  Google Scholar 

  • Stein, C., Hansen, U., 2008. Plate Motions and the Viscosity Structure of the MZantle—Insights from Numerical Modelling. Earth Planet. Sci. Lett., 272(1–2): 29–40

    Article  Google Scholar 

  • Steinbach, V., Yuen, D. A., 1995. The Effects of Temperature-Dependent Viscosity on Mantle Convection with the Two Major Phase Transitions. Phys. Earth Planet. Inter., 90(1–2): 13–36

    Article  Google Scholar 

  • Tang, X. L., Dong, J. J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth’s Interior. Proc. Natl. Acad. Sci. USA, 107(10): 4539–4543

    Article  Google Scholar 

  • Tateno, S., Hirose, K., Sata, N., et al., 2009. Determination of Post-Perovskite Phase Transition Boundary up to 4 400 K and Implications for Thermal Structure in D” Layer. Earth Planet. Sci. Lett., 277(1–2): 130–136

    Article  Google Scholar 

  • Tosi, N., Sabadini, R., Marotta, A. M., et al., 2005. Simultaneous Inversion for the Earth’s Mantle Viscosity and Ice Mass Imbalance in Antarctica and Greenland. J. Geophys. Res., 110: B07402

    Article  Google Scholar 

  • Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth Planet. Sci. Lett., 298(1–2): 229–243

    Article  Google Scholar 

  • van Bemmelen, R. W., Berlage, H. P., 1934. Versuch Einer Mathematischen Behandlung Geotektonischer Bewegungen Unter Besonderer Beruecksichtigung der Undationstheorie. Gerlands. Beitr. Z. Geophys., 43(1–2): 19–55 (in German)

    Google Scholar 

  • Walte, N. P., Heidelbach, F., Miyajima, N., et al., 2009. Transformation Textures in Post-Perovskite: Understanding Mantle Flow in the D” Layer of the Earth. Geophys. Res. Lett., 36: L04302

    Article  Google Scholar 

  • Wentzcovitch, R. M., Justo, J. F., Wu, Z., et al., 2009. Anomalous Compressibility of Ferropericlase throughout the Iron Spin Cross-over. Proc. Natl. Acad. Sci. USA, 106(21): 8447–8452

    Google Scholar 

  • Wentzcovitch, R. M., Yu, Y. G., Wu, Z. Q., 2010. Thermodynamic Properties and Phase Relations in Mantle Minerals Investigated by First Priniciples Quasiharmonic Theory. Reviews in Mineralogy and Geochemistry, 71: 59–98

    Article  Google Scholar 

  • Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Phys. Earth. Planet. Inter., 143–144: 321–336

    Article  Google Scholar 

  • Yamamoto, M., Morgan, J. P., Morgan, W. J., 2007. Global Plume-Fed Asthenosphere Flow—I: Motivation and Model Development. GSA Special Papers, 430: 165–188

    Google Scholar 

  • Yamazaki, D., Karato, S., 2007. Lattice Preferred Orientation of Lower Mantle Materials and Seismic Anisotropy in the D” Layer. In: Hirose, K., Brodholt, J., Lay, T., et al., eds., Post-Perovskite: The Last Mantle Phase Transition. AGU Monograph, 174: 69–78

  • Yoshino, T., Yamazaki, D., 2007. Grain Growth Kinetics of CaIrO3 Perovskite and Post-Perovskite, with Implications for Rheology of D” Layer. Earth Planet. Sci. Lett., 255(3–4): 485–493

    Article  Google Scholar 

  • Yu, Y., Wu, Z., Wentzcovitch, R. M., 2008. α-β-γ Transformations in Mg2SiO4 in Earth’s Transition Zone. Earth Planet. Sci. Lett., 273: 115–122

    Article  Google Scholar 

  • Yuen, D. A., Cadek, O., van Keken, P., et al., 1996. Combined Results from Mineral Physics, Tomography and Mantle Convection and Their Implications on Global Geodynamics. In: Boschi, E., Morelli, A., Ekstrom, G., eds., Seismic Modelling of the Earth’s Structure. Editrice Compositori, Bologna. 463–505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Tosi.

Additional information

This study was supported by the CMG Program of the National Science Foundation, the Senior Visiting Professorship Program of the Chinese Academy of Sciences, the Helmholtz Association through the Research Alliance “Planetary Evolution and Life”, and the European Commission through the Marie Curie Research Training Network c2c (No. MRTN-CT-2006-035957).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, D.A., Tosi, N. & Čadek, O. Influences of lower-mantle properties on the formation of asthenosphere in oceanic upper mantle. J. Earth Sci. 22, 143–154 (2011). https://doi.org/10.1007/s12583-011-0166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0166-9

Key Words

Navigation