Skip to main content
Log in

Abstract

Biomembranes, which are made of a lipid bilayer matrix where proteins are embedded or attached, constitute a physical barrier for cell and its internal organelles. With regard to the distribution of their molecular components, biomembranes are both laterally heterogeneous and transversally asymmetric, and because of this they are sites of vital biochemical activities. Lipids may translocate from one leaflet of the bilayer to the opposite either spontaneously or facilitated by proteins, hence they contribute to the regulation of membrane asymmetry on which cell functioning, differentiation, and growth heavily depend. Such transverse motion—commonly called flip-flop—has been studied both experimentally and computationally. Experimental investigations face difficulties related to time-scales and probe-induced membrane perturbation issues. Molecular dynamics simulations play an important role for the molecular-level understanding of flip-flop. In this review we present a summary of the state of the art of computational studies of spontaneous flip-flop of phospholipids, sterols and fatty acids. Also, we highlight critical issues and strategies that have been developed to solve them, and what remains to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In Ref. [60] the name ketosterone was used.

  2. Lower rates were reported in refs. [71, 72] due to an error in the data analysis corrected in [71].

Abbreviations

CG:

Coarse grained

DAPC:

1,2-Diarachidonoyl-sn-glycero-3-phosphocholine

diC14:1-PC:

1,2-Dimyristelaidoyl-sn-glycero-3-phosphocholine

diC18:2-PC:

1,2-Dilinoleoyl-sn-glycero-3-phosphocholine

diC22:1-PC:

1,2-Dierucoyl-sn-glycero-3-phosphocholine (DEPC)

DLPC:

1,2-Dilauroyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPG:

1,2-Dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

DOPS:

1,2-Dioleoyl-sn-glycero-3-phospho-l-serine

DPD:

Dissipative particle dynamics

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

DSPS:

1,2-Distearoyl-sn-glycero-3-phospho-l-serine

DTPC:

1,2-Tetracosatetraenoyl-sn-glycero-3-phosphocholine

MD:

Molecular dynamics

PMF:

Potential of mean force

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

PSM:

N-palmitoyl-d-erythro-sphingosylphosphorylcholine

SAPC:

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

TPS:

Transition path sampling

References

  1. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)

    Article  Google Scholar 

  2. Nicolson, G.L.: Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim. Biophys. Acta 457, 57–108 (1976)

    Article  Google Scholar 

  3. Kornberg, R.D., McConnell, H.M.: Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10, 1111–1120 (1971)

    Article  Google Scholar 

  4. Nicolson, G.L.: The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838, 1451–1466 (2014)

    Article  Google Scholar 

  5. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    Article  Google Scholar 

  6. Vigh, L., Escriba, P.V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Maresca, B., Horva’th, I., Harwood, J.L.: The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog. Lipid Res. 44, 303–344 (2005)

    Article  Google Scholar 

  7. Hryniewicz-Jankowska, A., Augoff, K., Biernatowska, A., Podkalicka, J., Sikorski, A.F.: Membrane rafts as novel target in cancer therapy. Biochim. Biophys. Acta 1845, 155–165 (2014)

    Google Scholar 

  8. Nicolson, G.L., Ash, M.E.: Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim. Biophys. Acta 1838, 1657–1679 (2014)

    Article  Google Scholar 

  9. Zachowski, A.: Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294, 1–14 (1993)

    Article  Google Scholar 

  10. Daleke, D.L.: Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr. Opin. Hematol. 15, 191–195 (2008)

    Article  Google Scholar 

  11. Castegna, A., Lauderback, C.M., Mohammad-Abdul, H., Butterfield, D.H.: Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res. 1004, 193–197 (2004)

    Article  Google Scholar 

  12. Yamon, Y., Broccardo, C., Chambenoit, O., Luciani, M.-F., Toti, F., Chaslin, S., Freyssinet, J.-M., Devaux, P.F., Niesh, J., Marguet, D., Chimini, G.: ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol. 2, 399–406 (2000)

    Article  Google Scholar 

  13. Sathi, A., Viswanad, V., Aneesh, T.P., Kumar, B.A.: Pros and cons of phospholipid asymmetry in erythrocytes. J. Pharm. Bioallied Sci. 6, 81–85 (2014)

    Article  Google Scholar 

  14. Devaux, P.F., Hermann, A. (eds.): Transmembrane Dynamics of Lipids. Wiley, Hoboken, NJ (2011)

    Google Scholar 

  15. Tait, J.F., Gibson, D.: Measurements of membrane phospholipid asymmetry in normal and sickle-cell erythrocytes by means of Annexin V binding. J. Lab. Clin. Med. 123, 741–748 (1994)

    Google Scholar 

  16. Bevers, E.M., Comfurius, P., Zwaal, R.F.A.: Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta 736, 57–66 (1983)

    Article  Google Scholar 

  17. Bevers, E.M., Weidmer, T., Comfurius, P., Shattil, S.J., Weiss, H.J., Zwaal, R.F.A., Sims, P.J.: Defective Ca(2+)-induced micro vesiculation and deficient expression of procoagulant activity in eritrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome. Blood 79, 380–388 (1992)

    Google Scholar 

  18. Carley, A.N., Kleinfeld, A.M.: Flip-flop is the rate-limiting step for transport of free fatty acids across lipid vesicle membranes. Biochemistry 48, 10437–10445 (2009)

    Article  Google Scholar 

  19. Simard, J.R., Pillai, B.K., Hamilton, J.A.: Fatty acid flip-flop in a model membrane is faster than desorption into the aqueous phase. Biochemistry 47, 9081–9089 (2008)

    Article  Google Scholar 

  20. Bacia, K., Schwille, P., Kurzchalia, T.: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U.S.A. 102, 3272–3277 (2005)

    Article  Google Scholar 

  21. Bruckner, R.J., Mansy, S.S., Ricardo, A., Mahadevan, L., Szostak, J.W.: Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys. J. 97, 3113–3122 (2009)

    Article  Google Scholar 

  22. Peterlin, P., Arrigler, V., Kogej, K., Svetina, S., Walde, P.: Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids 159, 67–76 (2009)

    Article  Google Scholar 

  23. van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)

    Article  Google Scholar 

  24. Rajasekharan, A., Gummadi, S.N.: Inhibition of biogenic membrane flippase activity in reconstituted ER proteoliposomes in the presence of low cholesterol levels. Cell. Mol. Biol. Lett. 17, 136–152 (2012)

    Article  Google Scholar 

  25. Kol, M.A., de Kruijff, B., de Kroon, A.I.P.M.: Semin. Phospholipid flip-flop in biogenic membranes: what is needed to connect opposite sides. Semin. Cell Dev. Biol. 13, 163–170 (2002)

    Article  Google Scholar 

  26. Sanyal, S., Menon, A.K.: Flipping lipids: why an’ what’s the reason for? ACS Chem. Biol. 4, 895–909 (2009)

    Article  Google Scholar 

  27. Contreras, F.-X., Sánchez-Magraner, L., Alonso, A., Goñi, F.M.: Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 584, 1779–1786 (2010)

    Article  Google Scholar 

  28. Sharom, F.J.: Flipping and flopping—lipids on the move. IUBMB Life 63, 736–746 (2011)

    Google Scholar 

  29. de Vries, A.H., Mark, A.E., Marrink, S.J.: Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 126, 4488–4489 (2004)

    Article  Google Scholar 

  30. Bennett, W.F.D., MacCallum, J.L., Hinner, M.J., Marrink, S.J., Tieleman, D.P.: Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J. Am. Chem. Soc. 131, 12714–12720 (2009)

    Article  Google Scholar 

  31. Bennett, W.F.D., Tieleman, D.P.: Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J. Chem. Theory Comput. 7, 2981–2988 (2011)

    Article  Google Scholar 

  32. Mouret, L., Da Costa, G., Bondon, A.: Sterols associated with small unilamellar vesicles (SUVs): intrinsic mobility role for 1H NMR detection. Magn. Reson. Chem. 52, 339–344 (2014)

    Article  Google Scholar 

  33. Bretscher, M.S.: Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol. 236, 11–12 (1972)

    Article  Google Scholar 

  34. Cullis, P.R., de Kruijff, B.: 31P-NMRstudies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Biochim. Biophys. Acta 507, 207–218 (1978)

    Article  Google Scholar 

  35. Pomorski, T.S., Hrafnsdottir, S., Devaux, P.F., van Meer, G.: Lipid distribution and transport across cellular membranes. Semin. Cell Dev. Biol. 12, 139–148 (2001)

    Article  Google Scholar 

  36. Daleke, D.L.: Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 44, 233–242 (2003)

    Article  Google Scholar 

  37. Gummadi, S.N., Kumar, K.S.: The mystery of phospholipid flip-flop in biogenic membranes. Cell. Mol. Biol. Lett. 10, 101–121 (2005)

    Google Scholar 

  38. Homan, R., Pownall, H.J.: Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length. Biochim. Biophys. Acta 938, 155–166 (1988)

    Article  Google Scholar 

  39. Anglin, T.C., Liu, J., Conboy, J.C.: Facile lipid flip-flop in a phospholipid bilayer induced by gramicidin A measured by sum-frequency vibrational spectroscopy. Biophys. J. 92, L01–L03 (2007)

    Article  Google Scholar 

  40. Anglin, T.C., Brown, K.L., Conboy, J.C.: Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin. J. Struct. Biol. 168, 37–52 (2009)

    Article  Google Scholar 

  41. Pantaler, E., Kamp, D., Haest, C.W.: Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. Biochim. Biophys. Acta 1509, 397–408 (2000)

    Article  Google Scholar 

  42. Urbina, P., Alonso, A., Contreras, F.X., Goñi, F.M., López, D.J., Montes, L.R., Sot, J.: Alkanes are not innocuous vehicles for hydrophobic reagents in membrane studies. Chem. Phys. Lipids 139, 107–114 (2006)

    Article  Google Scholar 

  43. Brown, K.L., Conboy, J.C.: Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine. J. Phys. Chem. B 117, 15041–15050 (2013)

    Article  Google Scholar 

  44. Liu, J., Brown, K.L., Conboy, J.C.: The effect of cholesterol on the intrinsic rate of lipid flip–flop as measured by sum-frequency vibrational spectroscopy. Faraday Discuss. 161, 45–61 (2013)

    Article  Google Scholar 

  45. Gerelli, Y., Porcar, L., Fragneto, G.: Lipid rearrangement in DSPC/DMPC bilayers: a neutron reflectometry study. Langmuir 28, 15922–15928 (2012)

    Article  Google Scholar 

  46. Brown, K.L., Conboy, J.C.: Phosphatidylglycerol flip-flop suppression due to headgroup charge repulsion. J. Phys. Chem. B 119, 10252–10260 (2015)

    Article  Google Scholar 

  47. John, K., Schreiber, S., Kubelt, J., Herrmann, A., Müller, P.: Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes. Biophys. J. 83, 3315–3323 (2002)

    Article  Google Scholar 

  48. Liu, J., Conboy, J.C.: 1,2-Diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys. J. 89, 2522–2532 (2005)

    Article  Google Scholar 

  49. Zachowski, A., Devaux, P.F.: Transmembrane movement of lipids. Experientia 46, 644–656 (1990)

    Article  Google Scholar 

  50. Schaffer, J.E.: Fatty acid transport: the roads taken. Am. J. Physiol. Endocrinol. Metab. 282, E239–E246 (2002)

    Article  Google Scholar 

  51. Hamilton, J.A.: Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14, 263–271 (2003)

    Article  Google Scholar 

  52. Steck, T.L., Lange, Y.: How slow is the transbilayer diffusion (flip-flop) of cholesterol? Biophys. J. 102, 945–946 (2012)

    Article  Google Scholar 

  53. Ma, S., Li, H., Tian, K., Ye, S., Luo, Y.: In situ and real-time SFG measurements revealing organization and transport of cholesterol analogue 6-ketocholestanol in a cell membrane. J. Phys. Chem. Lett. 5, 419–424 (2014)

    Article  Google Scholar 

  54. Imparato, A., Shillcock, J.C., Lipowsky, R.: Lateral and transverse diffusion in two-bilayer component membrane. Eur. Phys. J. E 11, 21–28 (2003)

    Article  Google Scholar 

  55. Leontiadou, H., Mark, A.E., Marrink, S.J.: Antimicrobial peptides in action. J. Am. Chem. Soc. 128, 12156–12161 (2006)

    Article  Google Scholar 

  56. Dickey, A.N., Faller, R.: How alcohol chain-length and concentration modulate hydrogen bond formation in a lipid bilayer. Biophys. J. 92, 2366–2376 (2007)

    Article  Google Scholar 

  57. Kandasamy, S., Larson, R.: Cation and anion transport through hydrophilic pores in lipid bilayers. J. Chem. Phys. 125, 074901 (2006)

    Article  Google Scholar 

  58. Gurtovenko, A.A., Onike, O.I., Anwar, J.: Chemically induced phospholipid translocation across biological membranes. Langmuir 24, 9656–9660 (2008)

    Article  Google Scholar 

  59. Gurtovenko, A.A., Vattulainen, I.: Molecular mechanism for lipid flip-flops. J. Phys. Chem. B 111, 13554–13559 (2007)

    Article  Google Scholar 

  60. Róg, T., Stimson, L.M., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M.: Replacing the cholesterol hydroxyl group with the ketone group facilitates sterol flip-flop and promotes membrane fluidity. J. Phys. Chem. B 112, 1946–1952 (2008)

    Article  Google Scholar 

  61. Arai, N., Akimoto, T., Yamamoto, E., Yasui, M., Yasuoka, K.: Poisson property of the occurrence of flip-flops in a model membrane. J. Chem. Phys. 140, 064901 (2014)

    Article  Google Scholar 

  62. Kucerka, N., Perlmutter, J.D., Pan, J., Tristram-Nagle, S., Katsaras, J., Sachs, J.N.: The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys. J. 95, 2792–2805 (2008)

    Article  Google Scholar 

  63. Choubey, A., Kalia, R.K., Malmstadt, N., Nakano, A., Vashishta, P.: Cholesterol translocation in a phospholipid membrane. Biophys. J. 104, 2429–2436 (2013)

    Article  Google Scholar 

  64. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007)

    Article  Google Scholar 

  65. Marrink, S.J., Tieleman, D.P.: Perspective on the martini model. Chem. Soc. Rev. 42, 6801–6822 (2013)

    Article  Google Scholar 

  66. Marrink, S.J., de Vries, A.H., Harroun, T.A., Katsaras, J., Wassall, S.R.: Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J. Am. Chem. Soc. 130, 10–11 (2008)

    Article  Google Scholar 

  67. Harroun, T.A., Katsaras, J., Wassall, S.R.: Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry 45, 1227–1233 (2006)

    Article  Google Scholar 

  68. Ogushi, F., Ishitsuka, R., Kobayashi, T., Sugita, Y.: Rapid flip-flop motions of diacylglycerol and ceramide in phospholipid bilayers. Chem. Phys. Lett. 522, 96–102 (2012)

    Article  Google Scholar 

  69. Risselada, H.J., Marrink, S.J.: The molecular face of lipid rafts in model membranes. PNAS 105, 17367–17372 (2008)

    Article  Google Scholar 

  70. Ipsen, J.H., Karlström, G., Mourtisen, O.G., Wennerström, H., Zuckermann, M.: Phase-equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172 (1987)

    Article  Google Scholar 

  71. Yesylevskyy, S.O., Demchenko, A.P.: How cholesterol is distributed between monolayers in asymmetric lipid membranes. Eur. Biophys. J. 41, 1043–1054 (2012)

    Article  Google Scholar 

  72. Yesylevskyy, S.O., Demchenko, A.P., Kraszewski, S., Ramseyer, C.: Cholesterol induces uneven curvature of asymmetric lipid bilayers. ScientificWorldJournal 2013, 965230 (2013)

    Article  Google Scholar 

  73. Yesylevskyy, S.O., Demchenko, A.P.: Cholesterol behavior in asymmetric lipid bilayers: insights form molecular dynamics simulations. Methods Mol. Biol. 1232, 291–306 (2015)

    Article  Google Scholar 

  74. Ingólfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., de Vries, A.H., Tieleman, D.P., Marrink, S.J.: Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014)

    Article  Google Scholar 

  75. Venturoli, M., Sperotto, M.M., Kranenburg, M., Smit, B.: Mesoscopic models of biological membranes. Phys. Rep. 437, 1–54 (2006)

    Article  Google Scholar 

  76. Ramachandran, S., Kumar, P.B.S., Laradji, M.: Lipid flip-flop driven mechanical and morphological changes in model membranes. J. Chem. Phys. 129, 125104 (2008)

    Article  Google Scholar 

  77. Martí, J., Csajka, F.S.: Flip-flop dynamics in a model lipid bilayer membrane. Europhys. Lett. 61, 409–414 (2003)

    Article  Google Scholar 

  78. Martí, J., Csajka, F.S.: Transition path sampling study of flip-flop transitions in model lipid bilayer membranes. Phys. Rev. E 69, 061918 (2004)

    Article  Google Scholar 

  79. Martí, J.: A molecular dynamics transition path sampling study of model lipid bilayer membranes in aqueous environments. J. Phys.: Condens. Matter 16, 5669–5678 (2004)

    Google Scholar 

  80. Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)

    Article  Google Scholar 

  81. Bennett, W.F.D., MacCallum, J.L., Tieleman, D.P.: Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J. Am. Chem. Soc. 131, 1972–1978 (2009)

    Article  Google Scholar 

  82. Sapay, N., Bennett, W.F.D., Tieleman, D.P.: Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter 5, 3295–3302 (2009)

    Article  Google Scholar 

  83. Neale, C., Bennett, W.F.D., Tieleman, D.P., Pomes, R.: Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. J. Chem. Theory Comput. 7, 4175–4188 (2011)

    Article  Google Scholar 

  84. Tielemann, D.P., Marrink, S.-J.: Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J. Am. Chem. Soc. 128, 12462–12467 (2006)

    Article  Google Scholar 

  85. Bennett, W.F.D., Sapay, N., Tieleman, D.P.: Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106, 210–219 (2014)

    Article  Google Scholar 

  86. Kol, M.A., de Kroon, A.I.P.M., Rijkers, D.T.S., Killian, J.A., de Kruijff, B.: Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry 40, 10500–10506 (2001)

    Article  Google Scholar 

  87. Bennett, W.F.D., Tieleman, D.P.: Molecular simulation of rapid translocation of cholesterol, diacylglycerol and ceramide in model raft and non-raft membranes. J. Lipid Res. 53, 421–429 (2012)

    Article  Google Scholar 

  88. Neuvonen, M., Manna, M., Mokkila, S., Javanainen, M., Róg, T., Liu, Z., Bittman, R., Vattulainen, I., Ikonen, E.: Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS ONE 9, e103743 (2014)

    Article  Google Scholar 

  89. Filipe, H.A.L., Moreno, M.J., Róg, T., Vattulainen, I., Loura, L.M.S.: How to tackle the issues in free energy simulations of long amphiphiles interacting with lipid membranes: convergence and local membrane deformations. J. Phys. Chem. B. 118, 3572–3581 (2014)

    Article  Google Scholar 

  90. Jo, S., Rui, J., Lim, J.B., Klauda, J.B., Im, W.: Cholesterol flip-flop: insights from free energy simulation studies. J. Phys. Chem. B 114, 13342–13348 (2010)

    Article  Google Scholar 

  91. Pan, A.C., Sezer, D., Roux, B.: Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B 112, 3432–3440 (2008)

    Article  Google Scholar 

  92. Wei, C., Pohorille, A.: Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J. Phys. Chem. B 118, 12919–12926 (2014)

    Article  Google Scholar 

  93. Parisio, G., Sperotto, M.M., Ferrarini, A.: Flip-flop of steroids in phospholipid bilayers: effects of the chemical structure on transbilayer diffusion. J. Am. Chem. Soc. 134, 12198–12208 (2012)

    Article  Google Scholar 

  94. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  95. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  96. Langer, J.S.: Statistical theory of the decay of metastable states. Ann. Phys. 54, 258–275 (1969)

    Article  Google Scholar 

  97. Parisio, G., Ferrarini, A.: Solute partitioning into lipid bilayers: an implicit model for nonuniform and ordered environment. J. Chem. Theory Comput. 6, 2267–2280 (2010)

    Article  Google Scholar 

  98. Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  99. Jämbeck, J.P.M., Lyubartsev, A.P.: Exploring the free energy landscape of solutes embedded in lipid bilayers. J. Phys. Chem. Lett. 4, 1781–1787 (2013)

    Article  Google Scholar 

  100. Parisio, G., Stocchero, M., Ferrarini, A.: Passive membrane permeability: beyond the standard solubility-diffusion model. J. Chem. Theory Comput. 9, 5236–5246 (2013)

    Article  Google Scholar 

  101. Depa, P., Chen, C., Maranas, J.K.: Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers. J. Chem. Phys. 134, 014903 (2011)

    Article  Google Scholar 

  102. Huang, K., Garcia, A.E.: Effects of truncating van der Waals interactions in lipid bilayer simulations. J. Chem. Phys. 141, 105101 (2014)

    Article  Google Scholar 

  103. Davis, R.S., Kumar, P.B.S., Sperotto, M.M., Laradji, M.: Prediction of phase separation in three-component lipid membranes by the MARTINI force field. J. Phys. Chem. B 117, 4072–4080 (2013)

    Article  Google Scholar 

  104. Yanagisawa, M., Imai, M., Komura, S., Ohta, T.: Growth dynamics of domains in ternary fluid vesicles. Biophys. J. 92, 115–125 (2007)

    Article  Google Scholar 

  105. Veatch, S.L., Keller, S.L.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002)

    Article  Google Scholar 

  106. Veatch, S.L., Keller, S.L.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003)

    Article  Google Scholar 

  107. Li, L., Liang, X., Lin, M., Qiu, F., Yang, Y.: Budding dynamics of multicomponent tubular vesicles. J. Am. Chem. Soc. 127, 17996–17997 (2005)

    Article  Google Scholar 

  108. Moro, G.J., Ferrarini, A., Polimeno, A., Nordio, P.L.: Models of conformational dynamics. In: Dorfmüller, Th. (ed.) Reactive and Flexible Molecules in Liquids, pp. 107–139. Kluwer Academic Publishers, Dordrecht (1989)

    Chapter  Google Scholar 

Download references

Acknowledgments

G.P. acknowledges financial support from University of Padova (Junior Grant 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Maddalena Sperotto.

Appendix: Diffusion model of flip-flop

Appendix: Diffusion model of flip-flop

If other molecular and collective degrees of freedom have a negligible effect, as occurs for sterols and some fatty acids, flip-flop can be described as a diffusive process on a free energy landscape defined by the Z-position (normal to the bilayer) and the tilt angle of the lipid with respect to the bilayer normal. The existence of high energy barriers between the free energy minima allows the reduction of the problem to a kinetic description, according to the multi-dimensional extension [96, 108] of Kramers theory for activated processes [94]. If the free energy presents only two minima, corresponding to the preferred position and orientation of the molecule in either leaflet, the flip-flop process can be simply described in terms of jumps from one to the other minimum. The rate constant for the transition connecting the free energy minima j′ and j through the saddle point can be expressed as:

$$ k_{{j \leftarrow j^{\prime } }} = - \frac{{\lambda_{s} }}{{2\pi k_{B} T}}\sqrt {\frac{{\left| {\det {{\textbf{\"{U}}}}_{{j^{\prime } }} } \right|}}{{\left| {\det {{\textbf{\"{U}}}}_{s} } \right|}}} \exp \left[ { - \frac{{\left( {U_{s} - U_{{j^{\prime } }} } \right)}}{{k_{B} T}}} \right] $$
(A1)

where k B is the Boltzmann constant, T is the temperature, U is the free energy, Ü is the matrix of the second derivatives of the free energy, and λ is the single negative eigenvalue of the product matrix , with D being the roto-translational diffusion tensor. The subscript indicates whether quantities are calculated in the minima (j, j′) or in the saddle point (s).

More generally, if in the free energy there are also metastable minima, the process can be pictured as a molecule first leaving the absolute minimum in one leaflet, then visiting other metastable sites within the bilayer, and finally reaching the absolute minimum in the other leaflet. In this case, the time evolution of the system is described in terms of the transitions between the free energy minima, according to the Master Equation [95]:

$$ \frac{\partial }{\partial t}p_{j} (t) = - \sum\limits_{{j^{{\prime }} }} {W_{{jj^{{\prime }} }} p_{{j^{{\prime }} }} (t)} $$
(A2)

where p j(t) is the time dependent probability of the j state, \( W_{jj^{\prime}} = - k_{{j \leftarrow j^{{\prime }} }} (j \ne j^{{\prime }} ) \), and \( W_{jj} = \sum\nolimits_{q} {k_{q \leftarrow j} } \). The time dependent probabilities are calculated by solving Eq. (A2) for a given initial condition, under the assumption that they approach the equilibrium probabilities at infinite time, p j (t → ∞) = p j,eq , with:

$$ p_{j,\;eq} = \frac{{\exp \left[ { - E_{j} /k_{B} T} \right]}}{{\sum\limits_{m} {\exp \left[ { - E_{m} /k_{B} T} \right]} }} $$
(A3)

where

$$ E_{j} = U_{j} + \frac{{k_{B} T}}{2}\ln \left| {\det \frac{{{{\ddot{\rm U}}}_{j} }}{{2\pi k_{B} T}}} \right|. $$
(A4)

Let us consider now the flip-flop process from the minimum A to the minimum B. By solving the master equation, Eq. (A2), with initial conditions p A (t = 0) = 1, p j≠A (t = 0) = 0, we calculate how the probability is transferred from A to any other minimum on the free energy surface. The flip-flop rate constant can then be obtained from the time evolution of the probability for the other absolute minimum, p B (t), according to the expression:

$$ k_{flip - flip}^{ - 1} = \int\limits_{0}^{\infty } {\frac{{p_{B} (t) - p_{B} (\infty )}}{{ - p_{B} (\infty )}}dt} $$
(A5)

In the case of only two minima, p B (t) follows a mono-exponential growth with rate constant k BA , and the integral in Eq. (A5) becomes equal to 1/k BA .

By performing the Boltzmann average of the free energy over the angular variable, the resulting 1D-PMF is a function of the single Z variable only. In this case the flip-flop rate constant can be evaluated as the rate of escape from the minimum over the barrier in the free energy profile. Thus the Kramers expression, which is the mono-dimensional analogue of Eq. (A5), can be used [94]:

$$ k_{flip - flop} = \frac{{D_{max} }}{{2\pi k_{B} T}}\sqrt {\frac{{{\ddot{U}}_{max} }}{{{\ddot{U}}_{min} }}} exp\left[ { - \frac{{U_{max} - U_{min} }}{{k_{B} T}}} \right] $$
(A6)

where U is the free energy and Ü is the curvature of the free energy profile, in the minimum (min) and in the maximum (max), respectively, with the diffusion coefficient along the single coordinate of interest evaluated on the top of the barrier, D max .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisio, G., Ferrarini, A. & Sperotto, M.M. Model studies of lipid flip-flop in membranes. Int J Adv Eng Sci Appl Math 8, 134–146 (2016). https://doi.org/10.1007/s12572-015-0155-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0155-9

Keywords

Navigation