Skip to main content
Log in

Development of super luminescent diode based sensing technique for multiple-gas monitoring

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

A multiple-gas sensor based on absorption spectroscopy technique using a super luminescent diode source of 1.5 μm is proposed and realized for combustion applications. This technique allows CH4 and CO2 gas sensing in bio-gas plant to monitor the quality of the gas. In this study, a solid Fabry–Perot etalon with a free spectral range of 517 GHz is also used and the detection limit is improved, allowing measurement with lower resolution spectrum analyzer. The detection limit of 292 ppm for C2H2 (at 1,543.7 nm), 4,492 ppm for CH4 (at 1,525.92 nm) and 6.5 % for CO2 (at 1,572.68 nm) is attained for 2 m path length with the spectrum analyser of 0.02 nm resolution. With the use of etalon, nearly the same detection limit is attained for all the species at 1 nm resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deublein, D., Steinhauser, A.: Bio-gas from Waste and Renewable Resources—An Introduction. Wiley VCH, Weinheim (2008)

    Book  Google Scholar 

  2. Kymäläinen, M., Lähde, K., Arnold, M., Kurola, J.M., Romantschuk c, M., Kautola, H.: Bio-gasification of biowaste and sewage sludge measurement of bio-gas quality. J. Environ. Manage. 95, S122–S127 (2012)

    Article  Google Scholar 

  3. http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/2_7_Coal_Mining_Handling.pdf. Accessed Dec (2013)

  4. Wagner, S., Fisher, B.T., Fleming, J.W., Ebert, V.: TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames. Proc. Combust. Inst. 32, 839–846 (2009)

    Article  Google Scholar 

  5. Roy, S., Meyer, T.R., Lucht, R.P., Belovich, V.M., Corporan, E., Gord, J.R.: Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy. Combust. Flame 138, 273–284 (2004)

    Article  Google Scholar 

  6. Schilt, S., Thevenaz, L., Nikles, M., Emmenegger, L., Huglin, C.: Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications. Spectrochim Acta Part A 60, 3259–3268 (2004)

    Article  Google Scholar 

  7. Kauppinen, J., Wilcken, K., Kauppinen, I., Koskinen, V.: High sensitivity in gas analysis with photoacoustic detection. Microchem. J. 76, 151–159 (2004)

    Article  Google Scholar 

  8. Uotila, J., Kauppinen, J.: Fourier transform infrared measurement of solid, liquid, and gas-phase samples with a single photoacoustic cell. Appl. Spectrosc. 62, 655–660 (2008)

    Article  Google Scholar 

  9. Kosterev, A.A., Tittel, F.K.: Ammonia detection by use of quartz enhanced photoacoustic spectroscopy with a Near-IR telecommunication diode laser. Appl. Opt. 43, 6213–6217 (2004)

    Article  Google Scholar 

  10. Kiefer, J., Seeger, T., Steuer, S., Schorsch, S., Weikl, M.C., Leipertz, A.: Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Meas. Sci. Technol. 19, 1–9 (2008)

    Article  Google Scholar 

  11. Buldakov, M.A., Korolkov, V.A., Matrosov, I.I., Petrova, D.V., Tikhomirov, A.A.: Analyzing natural gas by spontaneous Raman scattering spectroscopy. J. Opt. Technol. 80, 27–32 (2013)

    Article  Google Scholar 

  12. Eichmann, S.C., Weschta, M., Kiefer, J., Seeger, T., Leipertz, A.: Characterization of a fast gas analyzer based on Raman scattering for the analysis of synthesis gas. Rev. Sci. Instrum. 81, 1–7 (2010)

    Article  Google Scholar 

  13. Afzelius, M., Bengtsson, P., Bood, J., Brackmann, C., Kurtz, A.: Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications. Appl. Opt. 45, 1177–1186 (2006)

    Article  Google Scholar 

  14. Weikl, M.C., Cong, Y., Seeger, T., Leipertz, A.: Development of a simplified dual-pump dual-broadband coherent anti-Stokes Raman scattering system. Appl. Opt. 48, B43–B50 (2009)

    Article  Google Scholar 

  15. Engel, S.R., Miller, J.D., Dedic, C.E., Seeger, T., Leipertz, A., Meyer, T.R.: Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed CH. J. Raman Spectrosc. 44, 1336–1343 (2013)

    Article  Google Scholar 

  16. Bohlin, Alexis., Kliewer, Christopher.J.: Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging. Appl. Phys. Lett. 104, 1–5 (2014)

    Article  Google Scholar 

  17. Ruth, A.A., Orphal, J., Fiedler, S.E.: Fourier-transform cavity enhanced absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46(17), 3611–3616 (2007)

    Article  Google Scholar 

  18. Muraoka, M., Maeda, M.: Laser-Aided Diagnostics of Plasmas and Gases, Series in Plasma Physics. Institute of Physics Publisher, Bristol (2001)

    Book  Google Scholar 

  19. Kiefer, J., Tröger, J.W., Seeger, T., Leipertz, A., Li, B., Li, Z.S., Aldén, M.: Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction. Meas. Sci. Technol. 21, 1–7 (2010)

    Article  Google Scholar 

  20. Vasa, N.J., Funakoshi, K., Yokoyama, S.: Development of a widely Tunable Mid-Infrared Coherent Optical Source Based on a Difference Frequency Generation in a Periodically Poled LiNbO3, Eng. Scie. Rep., Kyushu University, 26, 389–394 (2005)

  21. Armstrong, I., Johnstone, W., Duffin, K., Lengden, M., Chakraborty, A., Ruxton, K.: Detection of CH4 in the Mid-IR using difference frequency generation with tunable diode laser spectroscopy. IEEE J. Lightwave Technol. 28, 1435–1442 (2010)

    Article  Google Scholar 

  22. Hult, J., Watt, R.S., Kaminski, C.F.: High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt. Express 15, 11385–11395 (2007)

    Article  Google Scholar 

  23. Sych, Y., Engelbrecht, R., Schmauss, B., Kozlov, D., Seeger, T., Leipertz, A.: Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source. Opt. Express 18, 22762–22771 (2010)

    Article  Google Scholar 

  24. Sulochana, K., Eichmann, S.C., Vasa, N.J., Seeger, T., Kumaravel, M.: Mixed trace gas sensing for environmental applications. J. Nov. Carbon Resour. Sci. 7, 42–46 (2013)

    Google Scholar 

  25. Wysocki, G., Lewicki, R., Curl, R.F., Tittel, F.K., Diehl, L., Capasso, F., Troccoli, M., Hoffler, G., Bour, D.P., Corzine, S.W., Maulini, R., Faist, J.: Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B 92, 305–311 (2008)

    Article  Google Scholar 

  26. Spagnolo, V., Kosterev, A.A., Dong, L., Lewicki, R., Tittel, F.K.: NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl. Phys. B 100, 125–130 (2010)

    Article  Google Scholar 

  27. Divya, K., Sulochana, K., Vasa, N.J.: Superluminescent diode-based multiple-gas sensor for NH3 and H2O vapor monitoring. IEEE J. Sel. Top. Quantum Electron. 18, 1540–1545 (2012)

    Article  Google Scholar 

  28. http://hitran.iao.ru (HITRAN 2008 database)

  29. Ding, H., Liang, J., Cui, J., Wu, X.: A novel fiber Fabry–Perot filter based mixed-gas sensing system. Sens. Actuators B 138, 154–159 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to G. Balaganesh and K. Udhayakumar of Central Workshop, and K. Nagarajan of IC Engineer Laboratory at the Department of Mechanical Engineering for their help in fabrication of a gas cell, and providing C2H2 and bio-gas. The authors are also thankful to K. Divya and Anand Reddy Y. for their assistance during experimental study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sulochana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulochana, K., Akash, K., Kumaravel, M. et al. Development of super luminescent diode based sensing technique for multiple-gas monitoring. Int J Adv Eng Sci Appl Math 6, 117–124 (2014). https://doi.org/10.1007/s12572-014-0114-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-014-0114-x

Keywords

Navigation