Skip to main content
Log in

The TUBIN nanosatellite mission for wildfire detection in thermal infrared

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The increasing number of wildfires has significant impact on the Earth’s climate system. Furthermore, they cause severe economic damage in many parts of the world. While different land and airborne wildfire detection and observation systems are in use in some areas of the world already, spaceborne systems offer great potential regarding global and continuous observation. TUBIN is a proof-of-concept mission to demonstrate the capabilities of a nanosatellite carrying lightweight infrared microbolometer arrays for spaceborne detection of wildfires and other high-temperature events. To this end, TUBIN carries two infrared microbolometers complemented by a CMOS imager. The TUBIN space segment is based on the TUBiX20 nanosatellite platform of Technische Universität Berlin and is the first mission that implements the full-scale attitude determination and control system of TUBiX20. Thereby, the TUBIN mission will demonstrate the platform’s ability to support a challenging Earth observation mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alkhatib, A.A.A.: A review on forest fire detection techniques. Int. J. Distrib. Sens. Netw. 10, 1–12 (2014)

  2. Ambrosia, V., Myersb, J., Hildum, E.: NASA’s autonomous modular scanner (AMS)—wildfire sensor: Improving wildfire observations from airborne platforms. In: Proceedings of the 34th International Symposium for Remote Sensing of the Environment. Sidney, Australia (2011)

  3. Andreae, M.: Biomass burning: Its history, use and distribution and its impact on environmental quality and global climate. In: Levine, J. (ed.) Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, pp. 3–21. MIT Press, Cambridge (1991)

    Google Scholar 

  4. Barschke, M.F., Gordon, K., Lehmann, M., Brieß, K.: The TechnoSat mission for on-orbit technology demonstration. In: Proceedings of the 65th German Aerospace Congress, Braunschweig, Germany (2016)

  5. Barschke, M.F., Baumann, F., Ballheimer, W., Großekatthöfer, K., Nitzschke, C., Brieß, K.: TUBiX20—the novel nanosatellite bus of TU Berlin. In: Proceedings of the 9th IAA Symposium on Small Satellites for Earth Observation, pp. 93–96. Berlin, Germany (2013)

  6. Barschke, M.F., Gordon, K.: TUBiX20—a generic systems architecture for a single failure tolerant nanosatellite platform. In: Proceedings of the 65th International Astronautical Congress. Toronto, Canada (2014)

  7. Barschke, M.F., Großekatthöfer, K., Montenegro, S.: Implementation of a nanosatellite on-board software based on building-blocks. In: Proceedings of the Small Satellites Systems and Services Symposium. Porto Pedro, Spain (2014)

  8. Baumann, F., Brieß, K.: A quand-channnel UHF transceiver for TUBiX20. In: Proceedings of the 10th IAA Symposium on Small Satellites for Earth Observation, pp. 371–374. Berlin, Germany (2015)

  9. Buchen, E.: Small satellite market observations. In: Proceedings of the 29th AIAA/USU Conference on Small Satellites. Logan, USA (2015)

  10. Clark, C., Viergever, K., Vick, A., Bryson, I.: Achieving global awareness via advanced remote sensing techniques on 3U CubeSats. In: Proceedings of the 26th AIAA/USU Conference on Small Satellites. Logan, USA (2012)

  11. Coppo, P., Battistelli, E., Barilli, M., Basile, G., Bonsignori, R., Capanni, A., Chiarantini, L., Giunti, C., Pieraccini, S., Romoli, A., Taccola, M., Bello, U.D.: Requirements and design of a thermal high-resolution Earth mapper (THEMA) based on uncooled detectors. In: Proceedings of SPIE Sensors, Systems, and Next-Generation Satellites VI, vol. 531 (2004)

  12. Escorial, D., Tourne, I.F., Reina, F.J.: FUEGO: A dedicated constellation of small satellites to detect and monitor forest fires. In: Proceedings of the 3rd IAA Symposium on Small Satellites for Earth Observation. Berlin, Germany (2001)

  13. Flannigan, M., Krawchuk, M., de Groot, W., Wotton, B., Gowman, L.: Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009)

    Article  Google Scholar 

  14. Giglio, L., Csiszar, I., Rests, A., Morisette, J.T., Schroeder, W., Morton, D., Justice, C.O.: Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 112, 3055–3063 (2008)

    Article  Google Scholar 

  15. Gordon, K., Barschke, M.F.: A new concept of software architecture for a flexible attitude determination and control of nanosatellites. In: Proceedings of the 66th International Astronautical Congress. Jerusalem, Israel (2015)

  16. Gordon, K., Graf, A., Barschke, M.F.: Practical experiences in using continuous integration within the development of nanosatellite software. In: Proceedings of the 10th IAA Symposium on Small Satellites for Earth Observation. Berlin, Germany (2015)

  17. Hamel, J.F., St-Amour, A., de Lafontaine, J., Mierlo, M.V., Lawrence, B., Phong, L.N., Lynham, T.J., Johnston, J.M., Cain, J., Lihou, M., Dufour, D., Royer, A., Flannigan, M., Bonin, G., Gravel, S., Davignon, D.: The innovative microsatellite-based canadian wildland fire monitoring system. In: Proceedings of the 66th International Astronautical Congress. Jerusalem, Israel (2015)

  18. Harada, M., Katayama, H., Naitoh, M., Suganuma, M., Nakamura, R., und T. Sato, Y.T.: Development of the compact infrared camera (CIRC) for Earth observation. In: Proceedings of the International Conference on Space Optics. Rhodes, Greece (2010)

  19. Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., Kaufman, Y.: The MODIS fire products. Remote Sens. Environ. 83, 244–262 (2002)

    Article  Google Scholar 

  20. Kato, E., Katayama, H., Sakai, M., Nakajima, Y., Kimura, T., Nakau, K., Tonooka, H.: Initial checkout results of the compact infrared camera (CIRC) for Earth observation. In: Proceedings of the 36th International Symposium on Remote Sensing of Environment. Berlin, Germany (2015)

  21. Költzsch, D., Barschke, M.F.: Development and verification of a lightweight and modular structure for a novel nanosatellite platform. In: Proceedings of the 63th German Aerospace Congress. Augsburg, Germany (2014)

  22. Lancaster, R.S., Skillman, D.R., Welch, W.C., Spinhirne, J.D., Manizade, K.F., Beecken, B.P.: The economical microbolometer-based environmental radiometer satellite (EMBERSat) designed for forest fire detection and monitoring. In: Proceedings of the International Thermal Detectors Workshop. Adelphi, USA (2004)

  23. Lentile, L., Holden, Z., Smith, A., Falkowski, M., Hudak, A., Morgan, P., Lewis, S., Gessler, P., Benson, N.: Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 15, 319–345 (2006)

    Article  Google Scholar 

  24. Lorenz, E., Mitchell, S., Säuberlich, T., Paproth, C., Halle, W., Frauenberger, O.: Remote sensing of high temperature events by the FireBird mission. Int. Arch. Photogramm. Remote Sens. Spat Inf. Sci. XL–7/W3, 461–467 (2015)

    Article  Google Scholar 

  25. Marraco, H., Phong, L.N.: NIRST: a satellite-based IR instrument for fire and sea surface temperature measurement. In: Proceedings of SPIE Non-Intrusive Inspection Technologies, 62130J, vol. 6213 (2006)

  26. Montenegro, S., Dannemann, F.: RODOS: Real time kernel design for dependability. In: Proceedings of Data Systems in Aerospace. Istanbul, Turkey (2009)

  27. Mouillot, F., Field, C.: Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob. Change Biol. 11, 398–420 (2005)

    Article  Google Scholar 

  28. Oelrich, B.D., Underwood, C.I.: Low cost thermal-IR imager for an Earth observation microsatellite. In: Proceedings of the 6th Conference on Sensors, Systems and Next Generation Satellites. Toulouse, France (2003)

  29. Pope, T.D., Alain, C., Bergeron, A., Jerominek, H., Saint-Pe, O., Zayer, I., Bezy, J.L.: Microbolometer detector array for satellite-based thermal infrared imaging. In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems. Alberta, Canada (2004)

  30. Savtchenko, A., Ouzounov, D., Ahmad, S., Acker, J., Leptoukh, G., Koziana, J., Nickless, D.: Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 34, 710–714 (2004)

    Article  Google Scholar 

  31. Schott, J.R., Hook, S.J., Barsi, J.A., Markham, B.L., Miller, J., Padula, F.P., Raqueno, N.G.: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ. 122, 41–49 (2012)

    Article  Google Scholar 

  32. Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., Morton, D.: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 112, 2711–2726 (2008)

    Article  Google Scholar 

  33. Spinhirne, J.D., Scott, V.S., Lancaster, R.S., Manizade, K., Palm, S.P.: Performance and results from a space borne, uncooled microbolometer array spectral radiometric imager. In: Proceedings of the Aerospace Conference, vol. 3, pp. 125–134. Big Sky, USA (2000)

  34. van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., Arellano, A.: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006)

    Article  Google Scholar 

  35. Weaver, J., Lindsey, D., Bikos, D., Schmidt, C., Prins, E.: Fire detection using GOES rapid scan imager. Weather and Forecast. 19, 496–510 (2003)

    Article  Google Scholar 

  36. Yamaura, S., Shirasaka, S., Hiramatsu, T., Ito, M., Araki, Y., Miyata, K., Otani, T., Sato, N., Akiyama, H., Nakau, K., Tsuruda, Y., Nakasuka, S., Tanaka, K., Maeda, K.: UNIFORM-1: First micro-satellite of forest fire monitoring constellation project. In: Proceedings of the 28th Annual AIAA/USU Conference on Small Satellites. Logan, USA (2014)

  37. Zhukov, B., Briess, K., Lorenz, E., Oertel, D., Skrbek, W.: Detection and analysis of high-temperature events in the BIRD mission. Acta Astronaut. 56, 65–71 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The TUBIN mission is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) through the German Aerospace Center (DLR) on the basis of a decision of the German Bundestag (Grant No. 50 RM 1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin F. Barschke.

Additional information

This paper is based on a presentation at the German Aerospace Congress, Sept. 22–24, 2015, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barschke, M.F., Bartholomäus, J., Gordon, K. et al. The TUBIN nanosatellite mission for wildfire detection in thermal infrared. CEAS Space J 9, 183–194 (2017). https://doi.org/10.1007/s12567-016-0140-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0140-6

Keywords

Navigation