Skip to main content
Log in

Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

a :

Length of a shell section, ring frame spacing

\({a_e}\) :

Length of a beam element

\({A_{ij}}\) :

Entries of the in-plane stiffness matrix

\({A_\mathrm{r}}\) :

Section area of ring frame

\({A_\mathrm{str}}\) :

Section area of stringer

\({b_{1\ldots 3}}\) :

Geometrical properties of stringer-stiffened shell

\({b_{\mathrm{r},F/S}}\) :

Flange width of ring frame according to Friedrich/Shanley

\({D_{ij}}\) :

Entries of the plate stiffness matrix

E :

Young’s modulus

\({F_\mathrm{R}}\) :

Radial unit force

G :

Shear modulus

\({I_\mathrm{T}}\) :

Torsional moment of inertia of ring frame

\({I_{y,\mathrm{r}}}\) :

Second moment of inertia about the frame’s \({y_\mathrm{r}}\)-axis

\({I_{z,\mathrm{r}}}\) :

Second moment of inertia about the frame’s \({z_\mathrm{r}}\)-axis

\({I_{y,\mathrm{str}}}\) :

Second moment of inertia about the shell’s y-axis of the stringer and the effective width

\({I_\mathrm{str}}\) :

Second moment of inertia about the shell’s y-axis of the stringer

\({k_{el.,fou.}}\) :

Stiffness of an elastic foundation

\({k_\mathrm{lin}}\) :

Translational stiffness of substitute model

\({k_\mathrm{lin,min}}\) :

Minimum translational stiffness

\({k_{lin,o}}\) :

Translational stiffness of load introduction frames

\({k_\mathrm{rot}}\) :

Rotational stiffness of substitute model

\({k_\mathrm{rot,min}}\) :

Minimum rotational stiffness

\({k_{rot,o}}\) :

Rotational stiffness of load introduction frames

l :

Length of the substitute model

L :

Length of the shell

\({M_R}\) :

Unit bending Moment acting about the ring frame’s circumferential direction

M :

Bending moment subjected to shell structure

\({m_{tot}}\) :

Total structural mass

\({\nu }\) :

Poisson’s ratio

\({n_{max}}\) :

Maximum number of coefficients used

\({n_{r}}\) :

Number of ring frames

N :

Axial load per unit length

\({n_\mathrm{str}}\) :

Number of stringer

P :

Axial compression

\({P_\mathrm{crit}}\) :

Critical axial compression load causing column buckling of one stringer and its effective width

\({\Pi _{tot}}\) :

Total potential

\({\Pi _{i}}\) :

Inner potential

\({\Pi _{e}}\) :

External potential

R :

Radius of the shell

\({t_\mathrm{skin}}\) :

Wall thickness of the shell

\({t_\mathrm{str}}\) :

Wall thickness of the stringer

\({t_{r}}\) :

Wall thickness of the ring frame

u :

displacement in axial direction of the shell

w :

Radial displacement

\({W_{s,j}}\) :

Coefficients of the ansatz function—sinus terms

\({W_{c,j}}\) :

Coefficients of the ansatz function—cosinus terms

xyz :

Coordinates of the cylindrical shell

\({x_\mathrm{r},y_\mathrm{r},z_\mathrm{r}}\) :

Coordinates of the ring frame stiffener

\({\varphi }\) :

Rotation of the ring frame about its \({x\mathrm{_r}}\)-axis

\({z_\mathrm{r}}\) :

Distance between the shell’s mid-plane and the center of area of the ring frame

\({z_\mathrm{str}}\) :

Distance between the shell’s mid-plane and the center of area of the stringer

References

  1. DESICOS Project. http://www.desicos.eu

  2. NASA SP-8007.: Buckling of Thin-Walled circular Cylinders, NASA Space Vehicle Design Criteria (1968)

  3. Almroth, B., Brush, D.O.: Buckling of Bars, Plates, and Shells. MacGraw-Hill (1974)

  4. Bazant, Z.P., Gedolin, L.: Stability of Structures: Elastic, Inelastic. Fracture and Damage Theories, World Scientific Pub Co (2010)

  5. Becker, H.: Handbook of structural stability part vi—strength of stiffened curved plates and shells. Naca-tn-3786 (1958)

  6. Beerhorst, M.: Entwicklung von hocheffizienten berechnungsmethoden zur beschreibung des beul- und nachbeulverhaltens von versteiften und unversteiften flächentragwerken aus faserverbundwerkstoffen. Ph.D. thesis, TU Berlin (2014)

  7. Bisagni, C., Vescovini, R.: Fast tool for buckling analysis and optimization of stiffened panels. J. Aircr. 46(6), 2041–2053 (2009). doi:10.2514/1.43396

    Article  Google Scholar 

  8. Block, D.L.: Influence of ring stiffeners on instability of orthotropic cylinders in axial compression. Tech. Rep. TN D-2482, NASA (1964)

  9. Buermann, P., Rolfes, R., Tessmer, J., Schagerl, M.: A semi-analytical model for local post-buckling analysis of stringer- and frame-stiffened cylindrical panels. Thin Walled Struct 44(1), 102–114 (2006). doi:10.1016/j.tws.2005.08.010

  10. Bürmann, P.: A semi-analytical model for the post-buckling analysis of stiffened cylindrical panels. Ph.D. thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig (2005)

  11. Byskov, E., Hutchinson, W.: Mode interaction in axially stiffened cylindrical shells. AIAA J. 15(7), 941–948 (1977). doi:10.2514/3.7388

    Article  Google Scholar 

  12. Dassault Systems: ABAQUS 6.13—Software Package (2013)

  13. Friedrich, L., Loosen, S., Liang, K., Ruess, M., Bisagni, C., Schröder, K.U.: Stacking sequence influence on imperfection sensitivity of cylindrical composite shells under axial compression. Compos. Struct. 134, 750–761 (2015). doi:10.1016/j.compstruct.2015.08.132

  14. Friedrich, L., Reimerdes, H.G., Schröder, K.U.: Sizing strategy for stringer and orthogrid stiffened shell structures under axial compression. International J. Struct. Stab. Dyn (submitted 29th of June 2015)

  15. Friedrich, L., Schmid-Fuertes, T.A., Schröder, K.U.: Comparison of theoretical approaches to account for geometrical imperfections of unstiffened isotropic thin walled cylindrical shell structures under axial compression. Thin Walled Struct. 92, 1–9 (2015). doi:10.1016/j.tws.2015.02.019

    Article  Google Scholar 

  16. Friedrich, L., Schröder, K.U.: Discrepancy between boundary conditions and load introduction of full-scale built-in and sub-scale experimental shell structures of space launcher vehicles. Thin-Walled Struct. 98(Part B), 403–415 (2016). doi:10.1016/j.tws.2015.10.007

  17. Friedrich, L., Ruess, M., Schröder, K.U.: Efficient and robust shell design of space launcher vehicle structures. In: 57th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; San Diego, (2016). doi:10.2514/6.2016-197

  18. Hilburger, M.W.: Developing the next generation shell buckling design factors and technologies. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Honolulu (2012)

  19. Mittelstedt, C.: Buckling and Postbuckling of Thin-Walled Stiffened Composite Panels—Efficient Analysis Methods for Lighweight Engineering. Technische Universität Darmstadt, Habilitationsschrift (2012)

    Google Scholar 

  20. Mittelstedt, C., Schröder, K.U.: Local postbuckling of hat-stringer-stiffened composite laminated plates under transverse compression. Compos. Struct. 92(12), 2830–2844 (2010). doi:10.1016/j.compstruct.2010.04.009

    Article  Google Scholar 

  21. NASA.: NASA Space Vehicle Design Criteria—Qualification Testing, nasa sp-8044 edn

  22. Öry, H.: Structural Design of Aerospace Vehicles III (1991)

  23. Öry, H., Hüßler, W.: Overview about actual buckling calculation methods for space vehicle structures. In: International Conference on Spacecraft Structures and mechanical testing (1988)

  24. Quatmann, M.: Entwicklung einer methode zur strukturellen vorauslegung von flugzeugrümpfen aus faserverbundwerkstoffen. Ph.D. thesis, RWTH Aachen University (2015)

  25. Quatmann, M., Aswini, N., Reimerdes, H.G., Gupta, N.K.: Superelements for a computationally efficient structural analysis of elliptical fuselage sections. Aerosp. Sci. Technol. 27(1), 76–83 (2013). doi:10.1016/j.ast.2012.06.009

  26. Quatmann, M., Reimerdes, H.G.: Preliminary design of composite fuselage structures using analytical rapid sizing methods. 2(1–4), 231–241 (2011). doi:10.1007/s13272-011-0025-5

  27. Quatmann, M., Reimerdes, H.G.: Computationally efficient analysis of the postbuckling behaviour of stiffened fuselage sections. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. American Institute of Aeronautics and Astronautics (2012). doi:10.2514/6.2012-1961

  28. Shanley, F.R.: Simplified analysis of general instability of stiffened shells in pure bending. J. Aeronaut. Sci. 16, 590–592 (1949)

    Article  Google Scholar 

  29. Tennyson, R.C., Muggeridge, D.B.: The effect of axisymmetric shape imperfections on the buckling of laminated anisotropic circular cylinders. Can. Aeronaut. Space Inst. Trans. 4(2), 131–139 (1971)

    Google Scholar 

  30. Thielemann, W., Schnell, W., Fischer, G.: Beul- und nachbeulverhalten orthotroper kreiszylinderschalen unter axial- und innendruck. Tech. Rep. 10/11, Zeitschrift für Flugwissenschaften 8 (1960)

  31. Vescovini, R., Bisagni, C.: Buckling analysis and optimization of stiffened composite flat and curved panels. AIAA J. 50(4), 904–915 (2012). doi:10.2514/1.J051356

    Article  Google Scholar 

  32. Wiedemann, J.: Leichtbau—Band 1: Elemente. Springer-Verlag Berlin Heidelberg Tokyo (1986)

  33. Young, W.C., Budynas, R.G.: Roark’s Formulas for Stress and Strain, 7th edn. MacGraw-Hill (2002)

Download references

Acknowledgments

The authors acknowledge the computing time grant provided by the IT Center of RWTH Aachen University, which allowed us to perform the numerical studies on the high-performance computing cluster of RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linus Friedrich.

Additional information

This paper is based on a presentation on the German Aerospace Congress, Sept. 22–24, 2015, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, L., Schröder, KU. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles. CEAS Space J 8, 269–290 (2016). https://doi.org/10.1007/s12567-016-0126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0126-4

Keywords

Navigation