Skip to main content
Log in

Modeling and control of a space robot for active debris removal

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Space access and satellites lifespan are increasingly threatened by the great amount of debris in Low Earth Orbits. Among the many solutions proposed in the literature so far, the emphasis is put here on a robotic arm mounted on a “chaser” satellite to capture massive debris, such as dead satellites or launch vehicle upper stages. The modeling and control of such systems are investigated throughout the paper. Dynamic models rely on an adapted Newton–Euler algorithm, and control algorithms are based on the fixed-structure \(H_{\infty}\) synthesis, recently implemented in an efficient Matlab toolbox. The main goal is to efficiently track a target point on the debris while using PD-like controllers to reduce computational burden. The fixed-structure \(H_{\infty}\) framework proves to be a suitable tool to design a reduced-order robust controller that catches up with external disturbances and is simultaneously compatible with current space processors capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Deutsches zentrum für Luft- und Raumfahrt (DLR).

  2. More insights about the full orbital mechanics of the space robot can be found in [13].

  3. Transfer between the reference signal of the arm and the AOCS commanded torque.

References

  1. Kessler, D.J., Cour-Palais, B.G.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978)

    Article  Google Scholar 

  2. Liou, J.-C.: An active debris removal parametric study for LEO environment remediation. Adv. Space Res. 47, 1865–1876 (2011)

    Article  Google Scholar 

  3. Liou, J.-C., Johnson, N.L., Hill, N.M.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 66(5–6), 648–653 (2010)

    Article  Google Scholar 

  4. NASA Orbital Debris Program Office: Monthly number of objects in earth orbit by object type. Orbit. Debris Q. News 17(1), 8 (2013)

  5. Phipps, C.R.: A laser-optical system to re-enter or lower low Earth orbit space debris. Acta Astronaut. 93, 418–429 (2014)

    Article  Google Scholar 

  6. Pardini, C., Hanada, T., Krisko, P.H.: Benefits and risks of using electrodynamic tethers to de-orbit spacecraft. Acta Astronaut. 64(5–6), 571–588 (2009)

    Article  Google Scholar 

  7. Andrenucci, M., Pergola, P., Ruggiero A.: Active removal of space debris: expanding foam application for active debris removal. Technical report, University of Pisa (Italy)—Aerospace Engineering Department (2011)

  8. Bonnal, C., Ruault, J.-M., Desjean, M.-C.: Active debris removal: recent progress and current trends. Acta Astronaut. 85, 51–60 (2013)

    Article  Google Scholar 

  9. Aikenhead, B.A., Daniell, R.G., Davis, F.M.: Canadarm and the space shuttle. J. Vacuum Sci. Technol. A 1(2), 126–132 (1983)

    Article  Google Scholar 

  10. Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a japanese robot satellite ETS-VII. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation. 2, 1169–1174 (2000)

  11. Friend, R.B.: Orbital express program summary and mission overview. In: Sensors and Systems for Space Applications II. 6958, 1–11. Howard, R., Motaghedi, T., Pejmun (2008)

  12. Boge, T., Wimmer, T., Ma, O., Tzschichholz, T.: EPOS: using robotics for RvD simulation of on-orbit servicing missions. AIAA Model. Simulat. Technol. Conf. Canada, Toronto 1, 1–15 (2010)

  13. Wang, F., Sun, F., Liu, H.: Space robot modeling and control considering the effect of orbital mechanics. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics. 1, 193–198 (2006)

  14. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. Wiley, New York (2006)

    Google Scholar 

  15. Umetani, Y., Yoshida, K.: Workspace and manipulability analysis of space manipulator. Trans. Soc. Inst. Control Eng. E-1(1), 8 (2001)

  16. Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9(5), 531–543 (1993)

    Article  Google Scholar 

  17. Umetani, Y., Yoshida, K.: Resolved motion rate control of space robotic manipulators with generalized jacobian matrix. IEEE Trans. Robot. Autom. 5(3), 303–314 (1989)

    Article  Google Scholar 

  18. Papadopoulos, E., Dubowsky, S.: On the dynamic singularities in the control of free-floating manipulators. ASME Winter Ann. Meet. 15, 45–52 (1989)

    Google Scholar 

  19. Nakamura, Y., Mukherjee, R., Barbara, S.: Nonholonomic path planning of space robots. IEEE Int. Conf. Robot. Automat. 2, 1050–1055 (1989)

    Google Scholar 

  20. Nanos, K., Papadopoulos, E.: On Cartesian motions with singularities avoidance for free-floating space robots. IEEE Int. Conf. Robot. Automat. 1, 5398–5403 (2012)

    Google Scholar 

  21. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: IEEE International Conference on Robotics and Automation (ICRA), 1, 826–834, San Francisco (2000)

  22. Carignan, C.R., Akin, D.L.: The reaction stabilization of on-orbit robots. IEEE Control Syst. 20, 19–33 (2000)

    Article  Google Scholar 

  23. Ali, S., Moosavian, A., Papadopoulos, E.: Explicit dynamics of space free-flyers with multiple manipulators via SPACEMAPLE. Adv. Robot. 18(2), 223–244 (2004)

    Article  Google Scholar 

  24. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984)

    Article  Google Scholar 

  25. Nenchev, D.N.: Reaction null space of a multibody system with applications in robotics. Mech. Sci. 4(1), 97–112 (2013)

    Article  Google Scholar 

  26. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modeling and control. Int. J. Robot. Res. 10(4), 371–381 (1991)

  27. Saha, S.K.: Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. J. Appl. Mech. 66, 986–996 (1999)

  28. Mohan, A., Saha, S.K.: A recursive, numerically stable, and efficient simulation algorithm for serial robots. Multibody Syst. Dyn. 17(4), 291–319 (2007)

  29. Ali, S., Moosavian, A., Papadopoulos, E.: Free-flying robots in space: an overview of dynamics modeling, planning and control. Robotica 25(05), 537–547 (2007)

    Google Scholar 

  30. Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7(6), 750–758 (1991)

    Article  Google Scholar 

  31. Oda, M.: On the dynamics and control of ETS-7 satellite and its robot arm. Proc. IEEE Int. Conf. Intell. Robots Syst. IROS 3, 1586–1593 (1994)

    Google Scholar 

  32. Oda, M.: Coordinated control of spacecraft attitude and its manipulator. IEEE Int. Conf. Robot. Automat. 1, 732–738 (1996)

    Google Scholar 

  33. Dubowsky, S., Vance, E.E., Torres, M.A.: The control of space manipulators subject to spacecraft attitude control saturation limits. In: NASA Conference on Space Telerobotics, IV, 409–418 (1989)

  34. Papadopoulos, E., Dubowsky, S.: Coordinated manipulator/spacecraft motion control for space robotic systems. IEEE Int. Conf. Robot. Automat. 2, 1696–1701 (1991)

    Google Scholar 

  35. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. IEEE Int. Conf. Robot. Automat. 4, 579–585 (1987)

    Google Scholar 

  36. Kawamura, S., Miyazaki, F., Arimoto, S.: Is a local linear PD feedback control law effective for trajectory tracking of robot motion? IEEE Int. Conf. Robot. Automat. 3, 1335–1340 (1988)

    Google Scholar 

  37. Gahinet, P., Apkarian, P.: Structured \(H_\infty\) synthesis in MATLAB. IFAC World Cong. 18, 1435–1440 (2011)

    Google Scholar 

  38. Apkarian, P., Noll, D.: Nonsmooth \(H_\infty\) synthesis. IEEE Trans. Autom. Control 51(1), 71–86 (2006)

    Article  MathSciNet  Google Scholar 

  39. Apkarian, P.: Tuning controllers against multiple design requirements. Am. Control Conf. 1, 3888–3893 (2013)

    Google Scholar 

  40. Craig, J.J.: Introduction to robotics: mechanics and control. Addison-Wesley Publishing Company, 2nd edition (1989)

  41. Featherstone, R.: Rigid body dynamics algorithms. Springer, US (2008)

    Book  MATH  Google Scholar 

  42. Piersigilli, P., Sharf, I., Misra, A.K.: Reactionless capture of a satellite by a two degree-of-freedom manipulator. Acta Astronaut. 66(1–2), 183–192 (2010)

    Article  Google Scholar 

  43. Oda, M.: Motion control of the satellite mounted robot arm which assures satellite attitude stability. Acta Astronaut. 41(11), 739–750 (1997)

    Article  Google Scholar 

  44. Lampariello, R.: Motion planning for the on-orbit grasping of a non-cooperative target satellite with collision avoidance. Int. Symp. Artif. Intell. Robot. Automat. Space 1, 636–643 (2010)

    Google Scholar 

  45. Rubinger, B., Brousseau, M., Lymer, J., Gosselin, C., Laliberté, T., Piedboeuf, J.-C.: A novel robotic hand-SARAH for operations on the international space station. In: 7th Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA). pp. 1–8 (2002)

  46. Alazard, D.: Reverse engineering in control design. ISTE. Wiley, London (2013)

    Book  Google Scholar 

  47. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, London (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Dubanchet.

Additional information

This paper is based on a presentation at the 9th International ESA Conference on Guidance, Navigation and Control Systems, June 2–6, 2014, Porto, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubanchet, V., Saussié, D., Alazard, D. et al. Modeling and control of a space robot for active debris removal. CEAS Space J 7, 203–218 (2015). https://doi.org/10.1007/s12567-015-0082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0082-4

Keywords

Navigation