Skip to main content

Advertisement

Log in

Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The structure of the Golgi apparatus has been extensively examined by light and electron microscopy, but details of its three-dimensional (3D) structure have remained unclear because of the technical limitations of conventional microscopy techniques. To overcome this problem, we have developed several novel scanning electron microscopy (SEM) methods for observing the 3D structure of subcellular organelles including the Golgi apparatus: (1) an osmium maceration method that facilitates SEM observation of membranous organelles, including the Golgi apparatus, by selectively removing soluble cytoplasmic proteins, (2) an osmium impregnation/maceration method that combines an osmium impregnation method with the osmium maceration method to determine the polarity of the Golgi apparatus by SEM, (3) a correlative light and SEM method that combines a cryosectioning technique with the osmium maceration method to enable correlation of the immunocytochemical distribution of molecules with the 3D ultrastructure of the Golgi apparatus, and (4) array tomography based on the systematic collection and integration of SEM images of serial ultrathin sections on glass slides for revealing the 3D ultrastructure of the entire Golgi apparatus. Together, the novel SEM techniques listed above can reveal the complete 3D structure of the Golgi apparatus in different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beams HW, King RL (1933) The Golgi apparatus in the developing tooth, with special reference to polarity. Anat Rec 57:29–39

    Article  Google Scholar 

  • Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas Ø (2015) Seeing a mycobacterium-infected cell in nanoscale 3D: correlative imaging by light microscopy and FIB/SEM tomography. PLoS One 10:e0134644

    Article  PubMed  PubMed Central  Google Scholar 

  • Begemann I, Viplav A, Rasch C, Galic M (2015) Stochastic micro-pattern for automated correlative fluorescence—scanning electron microscopy. Sci Rep 5:17973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti L, Sogne E, Rodighiero S, Marchesi D, Milani P, Francolini M (2014) Customized patterned substrates for highly versatile correlative light-scanning electron microscopy. Sci Rep 4:7033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez-Llorca L, Hummel E, Zimmerman H, Zou C, Burgold S, Rietdorf J, Herms J (2015) Correlation of two-photon in vivo imaging and FIB/SEM microscopy. J Microsc 259:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochimoto H, Koga D, Sakai Y, Hira Y, Hosaka M, Ushiki T, Watanabe T (2013) Sustained treatment with a GnRH agonist (leuprorelin) affects the ultrastructure characteristics of membranous organelles in male rat pituitary gonadotropes. Arch Histol Cytol 74:41–57

    Article  CAS  Google Scholar 

  • Bos E, Hussaarts L, van Weering JR, Ellisman MH, de Wit H, Koster AJ (2014) Vitrification of Tokuyasu-style immuno-labelled sections for correlative cryo light microscopy and cryo electron tomography. J Struct Biol 186:273–282

    Article  PubMed  Google Scholar 

  • Bosch C, Martínez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Pérez-Martínez E, Lois C, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalton AJ, Flex MD (1953) Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat 92:277–305

    Article  CAS  PubMed  Google Scholar 

  • Dalton AJ, Flex MD (1954) Cytologic and cytochemical characteristics of the Golgi substance of the epithelial cells of the epididymis-in situ, in homogenates and after isolation. Am J Anat 94:171–207

    Article  CAS  PubMed  Google Scholar 

  • Darcy KJ, Staras K, Collinson LM, Goda Y (2006) An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy. Nat Protoc 1:988–994

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed  PubMed Central  Google Scholar 

  • Dylewski DP, Haralick RM, Keenan TW (1984) Three-dimensional ultrastructure of the Golgi apparatus in bovine mammary epithelial cells during lactation. J Ultrastruct Res 87:75–85

    Article  CAS  PubMed  Google Scholar 

  • Ellisman MH, Ghosh A (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Friend DS (1969) Cytochemical staining of multivesicular body and Golgi vesicles. J Cell Biol 41:263–279

    Article  Google Scholar 

  • Friend DS, Murray M (1965) Osmium impregnation of the Golgi apparatus. Am J Anat 117:135–150

    Article  CAS  PubMed  Google Scholar 

  • Frisch B, Lewis SM, Sherman D, Stuart PR, Osborn JS (1974) Utilization of ion-etching in studying blood cell ultrastructure. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 655–664

    Google Scholar 

  • Fujita T, Nagatani T, Hattori A (1974) A simple method of ion-etching for biological materials. An application to blood cells and spermatozoa. Arch Histol Jpn 36:195–204

    Article  CAS  PubMed  Google Scholar 

  • Fulker MJ, Holland L, Hurely RE (1973) Ion etching for organic materials. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 379–386

    Google Scholar 

  • Golgi C (1898a) Sur la structure des cellules nerveuses. Arch Ital Biol 30:60–71

    Google Scholar 

  • Golgi C (1898b) Sur la structure des cellules nerveuses des ganglions spinaux. Arch Ital Biol 30:278–286

    Google Scholar 

  • Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  CAS  PubMed  Google Scholar 

  • Haggis GH (1970) Cryofracture of biological material. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 99–104

    Google Scholar 

  • Hand A, Oliver C (1984) Effects of secretory stimulation of the Golgi apparatus and GERL of rat parotid acinar cells. J Histochem Cytochem 32:403–412

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Rmbourg A, Clermont Y (1991) Golgi apparatus of epithelial principal cells of the epididymal initial segment of the rat: structure, relationship with endoplasmic reticulum, and role in the formation of secretory vesicles. Anat Rec 229:159–176

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hodges GM, Muir MD, Sella C, Carteaud AJ (1972) The effect of radio-frequency sputter ion etching and ion-beam etching on biological material: a scanning electron microscope study. J Microsc 95:445–451

    Article  CAS  PubMed  Google Scholar 

  • Holcomb PS, Hoffpauir BK, Hoyson MC, Jackson DR, Deerinck TJ, Marrs GS, Dehoff M, Wu J, Ellisman MH, Spirou GA (2013) Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development. J Neurosci 33:12954–12969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstmann H, Körber C, Sätzler K, Aydin D, Kuner T (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7:e35172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys WJ, Spurlock BO, Johnson JS (1974) Critical point drying of ethanol-infiltrated, cryofractured biological specimens for scanning electron microscopy. In: Johari O, Corvin I (eds) scanning electron microscopy. IIT Research Institute, Chicago, pp 275–282

    Google Scholar 

  • Ichikawa A, Ichikawa I (1987) The fine structure of sublingual gland acinar cells of the Mongolian gerbil, Meriones unguiculatus, processed by rapid freezing followed by freeze-substitution fixation. Cell Tissue Res 250:305–314

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Kurosumi K (1977) Cytochemical and three-dimensional studies on Golgi apparatus and GERL of rat anterior pituitary cells by transmission electron microscopy. Cell Struct Funct 2:171–186

    Article  Google Scholar 

  • Kanazawa T, Gotoh M, Ohta K, Shiba N, Nakamura K (2015) Three-dimensional ultrastructural analysis of development at the supraspinatus insertion by using focused ion beam/scanning electron microscope tomography in rats. J Orthop Res 34:969–976

    Article  PubMed  Google Scholar 

  • Katsumoto T, Inoue M, Naguro T, Kurimura T (1991) Association of cytoskeletons with the Golgi apparatus: three-dimensional observation and computer-graphic reconstruction. J Electron Microsc 40:24–28

    CAS  Google Scholar 

  • Koga D, Ushiki T (2006) Three-dimensional ultrastructure of the Golgi apparatus in different cells: high-resolution scanning electron microscopy of osmium-macerated tissues. Arch Histol Cytol 69:357–374

    Article  PubMed  Google Scholar 

  • Koga D, Ushiki T (2008) The morphological analysis of the Golgi apparatus by scanning electron microscopy. Kenbikyo 43:283–286 (in Japanese with English abstract)

    Google Scholar 

  • Koga D, Kusumi S, Bochimoto H, Watanabe T, Ushiki T (2015a) Correlative light and scanning electron microscopy for observing the three-dimensional ultrastructure of membranous cell organelles in relation to their molecular components. J Histochem Cytochem 63:968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga D, Kusumi S, Shodo R, Dan Y, Ushiki T (2015b) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64:387–394

    Article  PubMed  Google Scholar 

  • Koga D, Kusumi S, Ushiki T (2016a) Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy 65:145–157

    Article  PubMed  Google Scholar 

  • Koga D, Bochimoto H, Watanabe T, Ushiki T (2016b) Backscattered electron image of osmium-impregnated/macerated tissues as a novel technique for identifying the cis-face of the Golgi apparatus by high-resolution scanning electron microscopy. J Microsc 263:87–96

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y (2013) Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 37:816–830

    Article  PubMed  Google Scholar 

  • Kopsch FR (1925) Das Binnengerüst in den Zellen einiger Organe des Menschen. Z Mikrosk Anat Forsch 5:221–284

    Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis SM, Osborn JS, Stuart PR (1968) Demonstration of an internal structure within the red blood cell by ion etching and scanning electron microscopy. Nature 220:614–616

    Article  CAS  PubMed  Google Scholar 

  • Lieberman AR (1969) Light- and electron microscope observations on the Golgi apparatus of normal and axotomized primary sensory neurons. J Anat 104:309–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DJ (1971) Scanning electron microscopic observation on non-mechanically cryofractured biological tissue. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 257–264

    Google Scholar 

  • Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101:5565–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T (1971) Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch Histol Jpn 32:445–454

    Article  CAS  PubMed  Google Scholar 

  • Murakami T (1973) A metal impregnation method of biological specimens for scanning electron microscopy. Arch Histol Jpn 35:323–326

    Article  CAS  PubMed  Google Scholar 

  • Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 50:859–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura K (2012) Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 43:612–620

    Article  CAS  PubMed  Google Scholar 

  • Ohtani O (1987) Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn 50:557–566

    Article  CAS  PubMed  Google Scholar 

  • Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA (2000) Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol Biol Cell 14:4470–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polishchuk RS, San Pietro E, Di Pentima A, Teté S, Bonifacino JS (2006) Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 7:1092–1103

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y (1986) Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat. Am J Anat 176:393–409

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Marraud A (1974) Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope. Am J Anat 140:27–46

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Hermo L (1979) three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am J Anat 154:455–476

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Segretain D, Clermont Y (1984) Tridimensional architecture of the Golgi apparatus in the atrial muscle of the rat. Am J Anat 170:163–179

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Hermo L, Segretain D (1987) Tridimensional architecture of the Golgi apparatus and its components in mouse cells of Brunner’s glands of the mouse. Am J Anat 179:95–107

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Hermo L (1988) Formation of secretion granules in the Golgi apparatus of pancreatic acinar cells of the rat. Am J Anat 183:187–199

    Article  CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Chrétien M, Oliver L (1992) Formation of secretory granules in the Golgi apparatus of prolactin cells in the rat pituitary gland: a stereoscopic study. Am J Anat 232:169–179

    CAS  Google Scholar 

  • Reichelt M, Joubert L, Perrino J, Koh AL, Phanwar I, Arvin AM (2012) 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography. PLoS Pathog 8:e1002740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JM, Takizawa T (2008) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235:259–272

    Article  Google Scholar 

  • Sesso A, de Faria FP, Iwamura ES, Corrêa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528

    PubMed  Google Scholar 

  • Severinghaus AE (1933) A cytological study of the anterior pituitary of the rat, with specialreference to the Golgi apparatus and to cell relationship. Anat Rec 57:149–175

    Article  Google Scholar 

  • Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrand FS, Hanzon V (1954) Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res 7:415–429

    Article  CAS  PubMed  Google Scholar 

  • Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ (2012) Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 13:727–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strnad M, Elsterová J, Schrenková J, Vancová M, Rego RO, Grubhoffer L, Nebesářová J (2015) Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep 5:18029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714

    Article  CAS  PubMed  Google Scholar 

  • Tamaki H, Yamashina S (1991) Changes in cell polarity during mitosis in rat parotid acinar cells. J Histochem Cytochem 39:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Tamaki H, Yamashina S (1997) Three-dimensional dynamics of the golgi apparatus in mitotic parotid acinar cells: computer-aided reconstruction from cytochemically-marked ultrathin serial sections. Acta Histochem Cytochem 30:643–651

    Article  Google Scholar 

  • Tanaka K, Fukudome H (1991) Three-dimensional organization of the Golgi complex observed by scanning electron microscopy. J Electron Microsc Tech 17:15–23

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Iino A (1974) Critical point drying method using dry ice. Stain Technol 49:203–206

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc 133:213–222

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Naguro T (1981) High resolution scanning electron microscopy of cell organelles by a new specimen preparation method. Biomed Res 2:63–70

    Google Scholar 

  • Tanaka K, Iino A, Naguro T (1974) Styrene resin cracking method for observing biological materials by scanning electron microscopy. J Electron Microsc 23:313–315

    CAS  Google Scholar 

  • Tanaka K, Iino A, Naguro T (1976) Scanning electron microscopic observation on intracellular structures of ion-etched materials. Arch. Histol jap 39:165–175

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mitsushima A, Fukudome H, Kashima Y (1986) Three-dimensional architecture of the Golgi complex observed by high resolution scanning electron microscopy. J Submicrosc Cytol 18:1–9

    CAS  PubMed  Google Scholar 

  • Takahashi-Iwanaga H, Fujita T (1986) Application of an NaOH maceration method to a scanning electron microscopic observation of Ito cells in the rat liver. Arch Histol Jpn 49:349–357

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga J, Edanaga M, Fujita T, Adachi K (1974) Freeze cracking of scanning electron microscope specimens. A study of the kidney and spleen. Arch Histol Jpn 37:165–182

    Article  CAS  PubMed  Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracyotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuyasu KT (1980) Immunochemistry on ultrathin frozen sections. Histochem J 12:381–403

    Article  CAS  PubMed  Google Scholar 

  • Tokuyasu KT (1989) Use of poly (vinylpyrrolidone) and poly (vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171

    Article  CAS  PubMed  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Ushiki T, Ide C (1988) A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 51:223–232

    Article  CAS  PubMed  Google Scholar 

  • van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW (2007) Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485

    Article  PubMed  Google Scholar 

  • van Rijnsoever C, Oorschot V, Klumperman J (2008) Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5:973–980

    Article  PubMed  Google Scholar 

  • Wacker I, Schroeder RR (2013) Array tomography. J Microsc 252:93–99

    Article  CAS  PubMed  Google Scholar 

  • Wacker I, Chockley P, Bartels C, Spomer W, Hofmann A, Gengenbach U, Singh S, Thaler M, Grabher C, Schröder RR (2015) Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure. J Microsc 259:105–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, Ushiki T (2012) A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem 60:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke SA, Antonios JK, Bushong EA, Badkoobehi A, Malek E, Hwang M, Terada M, Zankel A, Kraus B, Poelt P, Schaffer M, Ingolic E (2009) Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J Microsc 233:140–148

    Article  Google Scholar 

  • Yamamoto K (1995) Sexual differences in the Golgi apparatus of rat hepatocytes: three-dimensional analysis. Cell Tissue Res 279:459–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Emeritus Shohei Yamashina (Department of Anatomy, Kitasato University School of Medicine) and Prof. Emeritus Keiichi Tanaka (Department of Anatomy, Faculty of Medicine, Tottori University) for their mentorship and valuable comments. The authors are also grateful to Drs. Satoshi Kusumi (Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences) and Hiroki Bochimoto (Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University) for their constructive suggestions and technical support. This work was supported in part by Grants-in-Aid for Young Scientists (B) from the Japanese Society for the Promotion of Science (JSPS) (#21790176 and #26860128), a Grant-in-Aid for Scientific Research (c) from the JSPS (# 16k08458) and a Tsukada Grant for Niigata University Medical Research. This review is based on a lecture given on receipt of the Encouragement Award of the Japanese Association of Anatomists at the 121st annual meeting held at Big Palette, Fukushima, on 29 March 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Koga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koga, D., Ushiki, T. & Watanabe, T. Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus. Anat Sci Int 92, 37–49 (2017). https://doi.org/10.1007/s12565-016-0380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0380-8

Keywords

Navigation