Skip to main content
Log in

Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Depression has become a common public health problem that is showing increasing prevalence. Slow onset of action, low response rates and drug resistance are potential limitations of the current antidepressant drugs. Alternative therapy using natural substances, specifically aromatherapy, is currently tried to treat depression. This work aimed to assess the efficacy of musk in relieving the behavioral, biochemical and hippocampal histopathological changes induced by exposure to chronic mild stress in mice and explore the possible mechanism behind this antidepressant-like effect. Forty male albino mice were divided into four groups (n = 10): control, a group exposed to chronic unpredictable mild stress (CUMS) and two groups exposed to CUMS and then treated with fluoxetine or musk. Behavioral changes and serum corticosterone levels were assessed at the end of the experiment. Protein and gene expressions of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) in the hippocampus were assessed using ELISA and real-time RT-PCR, respectively. Histopathological examination of the hippocampus and immunohistochemical techniques using glial fibrillary acidic protein (GFAP), Ki67, caspase-3, BDNF and GR were performed. Inhalation of musk had an antidepressant-like effect in an animal model of depression. Musk alleviated the behavioral changes and elevated serum corticosterone levels induced by exposure to chronic stress. It reduced the hippocampal neuronal apoptosis and stimulated neurogenesis in the dentate gyrus. Musk's action may be related to the upregulation of hippocampal GR and BDNF expressions. Musk is considered a potential antidepressant so it is advisable to assess its efficacy in treating depressed patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P (2004) Blockade of CRF1 or V1B receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 9:278–286

    Article  CAS  PubMed  Google Scholar 

  • Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36(3):415–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23(6):730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Bikmoradi A, Seifi Z, Poorolajal J, Araghchian M, Safiaryan R, Oshvandi K (2015) Effect of inhalation aromatherapy with lavender essential oil on stress and vital signs in patients undergoing coronary artery bypass surgery: a single-blinded randomized clinical trial. Complement Ther Med. 23(3):331–338

    Article  PubMed  Google Scholar 

  • Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxietylike behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Chen BH, Park JH, Cho JH, Kim IH, Shin BN, Ahn JH, Hwang SJ, Yan BC, Tae HJ, Lee JC, Bae EJ, Lee YL, Kim JD, Won MH, Kang IJ (2015) Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus. Neural Regen Res. 10(2):271–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Ferreira J, Losso EM, Andreatini R, Silva CR (2013) Anxiolytic-like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABA neurotransmission. J Ethnopharmacol 147:412–418

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493. doi:10.1016/j.neuron.2009.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doron R, Lotan D, Versano Z, Benatav L, Franko M, Armoza S, Kately N, Rehavi M (2014) Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety like behavior through corticosterone and BDNF modifications. PLoS One. 9(4):e91455. doi:10.1371/journal.pone.0091455

    Article  PubMed  PubMed Central  Google Scholar 

  • Douglas M, Maurer DM, Carl R (2012) Screening for depression. Am Fam Physician 85(2):139–144

    Google Scholar 

  • Ducottet C, Belzung C (2004) Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiol Behav 81:417–426

    Article  CAS  PubMed  Google Scholar 

  • Duman R (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. NeuroMol Med 5:11–26

    Article  CAS  Google Scholar 

  • Egan M, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103:8233–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui H, Komaki R, Okui M, Toyoshima K, Kuda K (2007) The effects of odor on cortisol and testosterone in healthy adults. Neuro Endocrinol Lett. 28(4):433–437

    CAS  PubMed  Google Scholar 

  • Khan IA, Abourashed EA (2010) Leung’s encyclopedia of common natural ingredients. Wileyz, Hoboken, pp 455–465

    Google Scholar 

  • Kim YK, Na KS, Myint AM, Leonard BE (2016) The role of proinflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 4(64):277–284. doi:10.1016/j.pnpbp.2015.06.008 Epub 2015 Jun 23

    Article  Google Scholar 

  • Kumamaru E, Numakawa T, Adachi N, Kunugi H (2011) Glucocorticoid suppresses BDNF-stimulated MAPK/ERK pathway via inhibiting interaction of Shp2 with TrkB. FEBS Lett 585(20):3224–3228

    Article  CAS  PubMed  Google Scholar 

  • Li M, Fu Q, Li Y, Li S, Xue J, Ma S (2014) Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 98:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lin DL, Chang HC, Huang SH (2004) Characterization of allegedly musk-containing medicinal products in Taiwan. J Forensic Sci 49(6):1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB (2013) Circadian glucocorticoid oscillations promote learningdependent synapse formation and maintenance. Nat Neurosci 16(6):698–705. doi:10.1038/nn.3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Xie K, Yang X, Gu J, Ge L, Wang X, Wang Z (2014) Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behav Brain Res 1(264):9–16. doi:10.1016/j.bbr.2014.01.039

    Article  Google Scholar 

  • Lucassen PJ, Fuchs E, Czéh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 8:789–796

    Article  Google Scholar 

  • Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czéh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. Eur Neuropsychopharmacol 20(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G et al (2014) Neuropathology of stress. Acta Neuropathol 127:109–135

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf NA, El-Beshbishy RA, Abousetta A (2014) Ginkgo modulates noise-induced hippocampal damage in male albino rats: a light and electron microscopic study. Egypt J Histol 37(1):159–174. doi:10.1097/01.EHX.0000444078.17248.ab

    Article  Google Scholar 

  • Malberg J, Duman RS (2003) Cell proliferation in adult hippocmpus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28(9):1562–1571

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Magarinos AM (2001) Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders. Hum Psychopharmacol 16:S7–S19

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C (2015) Mechanisms of stress in the brain. Nat Neurosci 18(10):1353–1363. doi:10.1038/nn.4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milanović SM, Erjavec K, Poljičanin T, Vrabec B, Brečić P (2015) Prevalence of depression symptoms and associated socio-demographic factors in primary health care patients. Psychiatria Danubina 27(1):31–37

    PubMed  Google Scholar 

  • Mineur YS, Belzung C, Crusio WE (2006) Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175:43–50

    Article  PubMed  Google Scholar 

  • Mizuki D, Matsumoto K, Tanaka K, Le Thi X, Fujiwara H, Ishikawa T, Higuchi Y (2014) Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action. J Ethnopharmacol 28(156):16–25. doi:10.1016/j.jep.2014.08.014 (Epub 2014 Aug 23)

    Article  Google Scholar 

  • Monteggia L (2007) Elucidating the role of brain-derived neurotrophic factor in the brain. Am J Psychiatry 164:1790

    Article  PubMed  Google Scholar 

  • Morishita S, Mishima Y, Shoji M (1987) Pharmacological properties of musk. Gen Pharmacol 18(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206

    Article  PubMed  Google Scholar 

  • Oh SR, Lee JP, Chang SY, Shin DH, Ahn KS, Min BS, Lee HK (2002) Androstane alkaloids from musk of Moschus moschiferus. Chem Pharm Bull 50:663–664

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404

    Article  CAS  PubMed  Google Scholar 

  • Patki G, Solanki N, Atrooz F, Allam F, Salim S (2013) Depression, anxiety-ike behavior and memory impairment are associated with increased oxidative stress andinflammation in a rat model of social stress. Brain Res 20(1539):73–86. doi:10.1016/j.brainres.2013.09.033 (Epub 2013 Oct 3)

    Article  Google Scholar 

  • Patrício P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, Correia JS, Korostynski M, Piechota M, Stoffel R, Beckers J, Bessa JM, Almeida OF, Sousa N, Pinto L (2015) Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology. 40(2):338–349. doi:10.1038/npp.2014.176 (Epub 2014 Jul 18)

    Article  PubMed  Google Scholar 

  • Pavesi E, Canteras NS, Carobrez AP (2011) Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacol 36:926–939

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat hippocampus in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Penn E, Tracy DK (2012) The drugs don’t work? Antidepressants and the current and future pharmacological management of depression. Ther Adv Psychopharmacol. 2(5):179–188. doi:10.1177/2045125312445469

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012) Neurobiology of resilience. Nat Neurosci 15(11):1475–1484. doi:10.1038/nn.3234 (Epub 2012 Oct 14)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay A, Drew MR, Hen R (2007) Dentate gyrus neurogenesis and depression. Prog Brain Res 163:697–722

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2006) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Biol Psychiatry 59:1116e1127

    Google Scholar 

  • Schmidt NB, Keough ME, Hunter LR, Funk AP (2008) Physical illness and treatment of anxiety disorders: a review. In: Zvolensky MJ, Smits J (eds) Series in anxiety and related disorders: anxiety in health behaviors and physical illness. Springer, New York, pp 341–366

    Chapter  Google Scholar 

  • Sokolov VE, Kagan MZ, Vasilieva VS, Prihodko VI, Zinkevich EP (1986) Musk deer (Moschus moschiferus): reinvestigation of main lipid components from preputial gland secretion. J Chem Ecol. 13(1):71–83

    Article  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomized rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  • Tillett J, Ames D (2010) The uses of aromatherapy in women’s health. J Perinat Neonatal Nurs. 24(3):238–245

    Article  PubMed  Google Scholar 

  • Tost H, Champagne FA, Meyer-Lindenberg A (2015) Environmental influence in the brain, human welfare and mental health. Nat Neurosci 18(10):1421–1431. doi:10.1038/nn.4108 Epub 2015 Sep 25

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SR, Galea LA (2013) The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSANCAM within the hippocampus. Neural Plast 2013:1–14. doi:10.1155/2013/805497

  • Wang WJ, Zhong M, Guo Y, Zhou LE, Cheng GF, Zhu XY (2003) Effects of musk glucoprotein on chemotaxis of polymorphonuclear leukocytes in vivo and in vitro. Zhongguo Zhong Yao Za Zhi 28(1):59–62

    PubMed  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 16(3):239–249

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, Knable MB, Johnston-Wilson N, Nagata K, Inagaki M, Yolken RH (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 15:388–400

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134(4):319–329

    Article  CAS  PubMed  Google Scholar 

  • World health organization (WHO) (2015) Depression, fact sheet N°369 October 2015. http://www.who.int/mediacentre/factsheets/fs369/en/. 11 Nov 2015

  • Wu X, Wu J, Xia S, Li B, Dong J (2013) Icaritin opposes the development of social aversion after defeat stress via increases of GR mRNA and BDNF mRNA in mice. Behav Brain Res 256:602–608

    Article  CAS  PubMed  Google Scholar 

  • Yi LT, Li J, Li HC, Su DX, Quan XB, He XC et al (2012) Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 39(1):175–181

    Article  CAS  PubMed  Google Scholar 

  • Yu HY, Yin ZJ, Yang SJ, Ma SP (2014) Baicalin reverse AMPA receptor expression and neuron apoptosis in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 451(4):467–472. doi:10.1016/j.bbrc.2014.07.041

    Article  CAS  PubMed  Google Scholar 

  • Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):722–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thankfully acknowledges Prof. Soad Shaker Ali, Faculty of Medicine, King Abdulaziz University, for her help and support. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. (512/140/1434). The author therefore thankfully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasra Naeim Ayuob.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayuob, N.N. Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works. Anat Sci Int 92, 539–553 (2017). https://doi.org/10.1007/s12565-016-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0357-7

Keywords

Navigation