Skip to main content

Advertisement

Log in

Renaissance of morphological studies: the examination of functional structures in living animal organs using the in vivo cryotechnique

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Medical and biological scientists wish to understand the in vivo structures of the cells and tissues that make up living animal organs, as well as the locations of their molecular components. Recently, the live imaging of animal cells and tissues with fluorescence-labeled proteins produced via gene manipulation has become increasingly common. Therefore, it is important to ensure that findings derived from histological or immunohistochemical tissue sections of living animal organs are compatible with those obtained from live images of the same organs, which can be assessed using recently developed digital imaging techniques. Over the past two decades, we have performed immunohistochemical and morphological studies of the cells and tissues in living animal organs using a novel in vivo cryotechnique. The use of a specially designed liquid cryogen system with or without a cryoknife during this cryotechnique solved the technical problems that inevitably arise during the conventional preparation methods employed prior to light or electron microscopic examinations. Our in vivo cryotechnique has been found to be extremely useful for arresting transient physiological processes in cells and tissues and for maintaining their functional components—such as rapidly changing signaling molecules, membrane channels, or receptors—in situ. The purpose of the present review is to describe the basic mechanism underlying cryotechniques and the significance of our in vivo cryotechnique. In addition, it describes various morphological or immunohistochemical findings, observations made using quantum dots, and a Raman cryomicroscopy-based method for assessing oxygen saturation in the erythrocytes flowing through intestinal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6a–g
Fig. 7a–c
Fig. 8a–b
Fig. 9a–d
Fig. 10a–d
Fig. 11a–d
Fig. 12a–f
Fig. 13a–d

Similar content being viewed by others

References

  • Anderson RGW (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews P (1988) Morphological alterations of the glomerular (visceral) epithelium in response to pathological and experimental situations. J Electron Microsc Tech 9:115–144

    Article  CAS  PubMed  Google Scholar 

  • Athanassiou G, Symeonidis A, Kourakli A, Missirlis YF, Zoumbos NC (1992) Deformability of the erythrocyte membrane in patients with myelodysplastic syndromes. Acta Haematol 87:169–172

    Article  CAS  PubMed  Google Scholar 

  • Bambace NM, Holmes CE (2011) The platelet contribution to cancer progression. J Thromb Haemost 9:237–249

    Article  CAS  PubMed  Google Scholar 

  • Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D, Kenaga L, Speed TP, Chen Y, Clements JA (1995) Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628

    CAS  PubMed  Google Scholar 

  • Biggerstaff JP, Seth N, Amirkhosravi A, Amaya M, Fogarty S, Meyer TV, Siddiqui F, Francis JL (1999) Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clin Exp Metastasis 17:723–730

    Article  CAS  PubMed  Google Scholar 

  • Bohrer MP, Deen WM, Robertson CR, Brenner BM (1977) Mechanism of angiotensin II-induced proteinuria in the rat. Am J Physiol 233:F13–F21

    CAS  PubMed  Google Scholar 

  • Boland B, Himpens B, Casteels R, Gillis JM (1993) Lack of dystrophin but normal calcium homeostasis in smooth muscle from dystrophic mdx mice. J Muscle Res Cell Motil 14:133–139

    Article  CAS  PubMed  Google Scholar 

  • Brenner BM, Bohner MP, Baylis C, Deen WM (1977) Determinants of glomerular permselectivity: insights derived from observations in vivo. Kidney Int 12:229–237

    Article  CAS  PubMed  Google Scholar 

  • Brown RH Jr (1997) Dystrophin-associated proteins and the muscular dystrophies. Annu Rev Med 48:457–466

    Article  CAS  PubMed  Google Scholar 

  • Budzynski AZ, Olexa SA, Pandya BV (1983) Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann N Y Acad Sci 408:301–314

    Article  CAS  PubMed  Google Scholar 

  • Byers TJ, Kunkel LM, Watkins SC (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J Cell Biol 115:411–421

    Article  CAS  PubMed  Google Scholar 

  • Carlson CG (1998) The dystrophinopathies: an alternative to the structural hypothesis. Neurobiol Dis 5:3–15

    Article  CAS  PubMed  Google Scholar 

  • Cole R, Matuszek G, See C, Rieder CL (1990) A simple pneumatic device for plunge-freezing cells grown on electron microscopy grids. J Electron Microsc Tech 16:167–173

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Seqall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  CAS  PubMed  Google Scholar 

  • Cote GL (2001) Noninvasive and minimally-invasive optical monitoring technologies. J Nutr 131:1596–1604

    Google Scholar 

  • Cynober T, Mohandas N, Tchernia G (1996) Red cell abnormalities in hereditary spherocytosis: relevance to diagnosis and understanding of the variable expression of clinical severity. J Lab Clin Med 128:259–269

    Article  CAS  PubMed  Google Scholar 

  • Drumond MC, Deen WM (1994) Structural determinants of glomerular hydraulic permeability. Am J Physiol 266:F1–F12

    CAS  PubMed  Google Scholar 

  • Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins—application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3450

  • Furukawa T, Ohno S, Oguchi H, Hora K, Tokunaga S, Furuta S (1991) Morphometric study of glomerular slit diaphragms fixed by rapid-freezing and freeze-substitution. Kidney Int 40:621–624

    Article  CAS  PubMed  Google Scholar 

  • Gabella G (1981) Structure of smooth muscle. In: Buelbring E, Brading AF, Jones AW, Tomita T (eds) An assessment of current knowledge. University of Texas Press, Austin, pp 1–46

    Google Scholar 

  • Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell–endothelial cell interaction. BMC Cancer 10:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith LD, Bulger RE, Trump BF (1967) The ultrastructure of the functioning kidney. Lab Investig 16:220–246

    CAS  PubMed  Google Scholar 

  • Groniowski J, Biczysko W (1964) Regulation of transport across pulmonary alveolar epithelial cell monolayers. Nature 204:745–747

    Article  CAS  PubMed  Google Scholar 

  • Ham AW, Cormack DH (1978) Histology, 8th edn. JB Lippincott, Philadelphia

    Google Scholar 

  • Hamano A, Tanaka S, Takeda Y, Umeda M, Sakata Y (2002) A novel monoclonal antibody to fibrin monomer and soluble fibrin for the detection of soluble fibrin in plasma. Clin Chim Acta 318:25–32

    Article  CAS  PubMed  Google Scholar 

  • Harreveld AV, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    Article  Google Scholar 

  • Harricane MC, Augier N, Leger J, Anoal M, Cavadore C, Mornet D (1991) Ultrastructural localization of dystrophin in chicken smooth muscle. Cell Biol Intern Rep 15:687–697

    Article  CAS  Google Scholar 

  • Hilgard P (1973) The role of blood platelets in experimental metastases. Br J Cancer 28:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes CE, Levis JE, Ornstein DL (2009) Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis. Clin Exp Metastasis 26:653–661

    Article  CAS  PubMed  Google Scholar 

  • Igarashi J, Sato A, Kitagawa T, Sagami I, Shimizu T (2003) CO binding study of mouse heme-regulated eIF-2a kinase: kinetics and resonance Raman spectra. Biochim Biophys Acta 1650:99–104

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Harris J, Ware J (2010) Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 30:2362–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehl B, Bauer R, Dorge A, Rick R (1981) The use of propane/isopentane mixtures for rapid freezing of biological specimens. J Microsc 123:307–309

    Article  CAS  PubMed  Google Scholar 

  • Jurasz P, Alonso-Escolano D, Radomski MW (2004) Platelet–cancer interactions: mechanisms and pharmacology of tumour cell induced platelet aggregation. Br J Pharmacol 143:819–826

  • Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Investig 51:7–21

    CAS  PubMed  Google Scholar 

  • Khurana TS, Prendergast RA, Alameddine HS, Tomé FM, Fardeau M, Arahata K, Sugita H, Kunkel LM (1995) Absence of extraocular muscle pathology in Duchenne’s muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing. J Exp Med 182:467–475

    Article  CAS  PubMed  Google Scholar 

  • Klug PP, Lessin LS, Radice P (1974) Rheological aspects of sickle cell disease. Arch Int Med 133:577–590

    Article  CAS  Google Scholar 

  • Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376

    Article  CAS  PubMed  Google Scholar 

  • Kvolik S, Jukic M, Matijevic M, Marjanovic K, Glavas-Obrovac L (2010) An overview of coagulation disorders in cancer patients. Surg Oncol 19:e33–e46

    Article  PubMed  Google Scholar 

  • Maeda N (1996) Erythrocyte rheology in microcirculation. Jpn J Physiol 46:1–14

    Article  CAS  PubMed  Google Scholar 

  • Manegold PC, Hutter J, Pahernik SA, Messmer K, Dellian M (2003) Platelet–endothelial interaction in tumor angiogenesis and microcirculation. Blood 101:1970–1976

    Article  CAS  PubMed  Google Scholar 

  • Marbini A, Marcello N, Bellanova MF, Guidetti D, Ferrari A, Gemignani F (1995) Dystrophin expression in skin biopsy immunohistochemical localisation of striated muscle type dystrophin. J Neurol Sci 129:29–33

    Article  CAS  PubMed  Google Scholar 

  • Marbini A, Gemignani F, Bellanova MF, Guidetti D, Ferrari A (1996) Immunohistochemical localization of utrophin and other cytoskeletal proteins in skin smooth muscle in neuromuscular diseases. J Neurol Sci 143:156–160

    Article  CAS  PubMed  Google Scholar 

  • McCarter GC, Denetclaw WFJ, Reddy P, Steinhardt RA (1997) Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. Gene Ther 4:483–487

    Article  CAS  PubMed  Google Scholar 

  • Michel CC (1998) Capillaries, caveolae, calcium and cyclic nucleotides: a new look at microvascular permeability. J Mol Cell Cardiol 30:2541–2546

    Article  CAS  PubMed  Google Scholar 

  • Mokken FC, Waart FJ, Henny CP, Goedhart PT, Gelb AW (1996) Differences in peripheral arterial and venous hemorheologic parameters. Ann Hematol 73:135–137

    Article  CAS  PubMed  Google Scholar 

  • Moor H, Bellin G, Sandri C, Akert K (1980) The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res 209:201–216

    Article  CAS  PubMed  Google Scholar 

  • Munter G, Hershko C (2001) Increased warfarin sensitivity as an early manifestation of occult prostate cancer with chronic disseminated intravascular coagulation. Acta Haematol 105:97–99

    Article  CAS  PubMed  Google Scholar 

  • Nighswander-Rempel SP, Anthony Shaw R, Mansfield JR, Hewko M, Kupriyanov VV, Mantsch HH (2002) Regional variations in myocardial tissue oxygenation mapped by near-infrared spectroscopic imaging. J Mol Cell Cardiol 34:1195–1203

  • North AJ, Galazkiewicz B, Byers TJ, Glenney JR Jr, Small JV (1993) Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J Cell Biol 120:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Hora K, Furukawa T, Oguchi H (1992) Ultrastructural study of the glomerular slit diaphragm in fresh unfixed kidneys by a quick-freezing method. Virchows Arch B Cell Pathol 61:351–358

    Article  CAS  Google Scholar 

  • Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427:519–527

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Kato Y, Xiang T, Terada N, Takayama I, Fujii Y, Baba T (2001) Ultrastructural study of mouse renal glomeruli under various hemodynamic conditions by an “in vivo cryotechnique”. Ital J Anat Embryol 106:431–438

    CAS  PubMed  Google Scholar 

  • Ohno N, Terada N, Fujii Y, Baba T, Ohno S (2004) “In vivo cryotechnique” for paradigm shift to “living morphology” of animal organs. Biomed Rev 15:1–19

    Article  Google Scholar 

  • Ohno N, Terada N, Murata S, Katoh R, Ohno S (2005) Application of cryotechniques with freeze-substitution for the immunohistochemical demonstration of intranuclear pCREB and chromosome territory. J Histochem Cytochem 53:55–62

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Ohno N, Terada N (eds) (2016) In vivo cryotechnique in biomedical research and application for bioimaging of living animal organs. Springer, Berlin

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Kithier K, Giacomelli F, Wiener J (1981) Glomerular permeability to endogenous proteins in the rat. Lab Investig 44:127–137

    CAS  PubMed  Google Scholar 

  • Ondrias MR, Rousseau DL, Simon SR (1981) Structural changes at the heme induced by freezing hemoglobin. Science 213:657–659

    Article  CAS  PubMed  Google Scholar 

  • Pasternak C, Wong S, Elson EL (1995) Mechanical function of dystrophin in muscle cells. J Cell Biol 128:355–361

    Article  CAS  PubMed  Google Scholar 

  • Plattner H, Bachmann L (1982) Cryofixation: a tool in biological ultrastructural research. Int Rev Cytol 79:237–304

    Article  CAS  PubMed  Google Scholar 

  • Robinson K (1978) Abdominal aorta. In: James DG (ed) Circulation of the blood. Pitman Medical, Tunbridge Wells, pp 173–175

    Google Scholar 

  • Ryan GB, Karnovsky MJ (1976) Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int 9:36–45

    Article  CAS  PubMed  Google Scholar 

  • Ryan GB, Hein SJ, Karnovsky MJ (1976) Glomerular permeability to proteins. Effects of hemodynamic factors on the distribution of endogenous immunoglobulin G and exogenous catalase in the rat glomerulus. Lab Investig 34:415–427

    CAS  PubMed  Google Scholar 

  • Rybicki AC, Qiu JJ, Musto S, Rosen NL, Nagel RL, Schwartz RS (1993) Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40 glutamic acid-lysine substitution in the cytoplasmic domain of band 3. Blood 81:2155–2165

    CAS  PubMed  Google Scholar 

  • Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S (2012) Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”. Histochem Cell Biol 137:137–151

    Article  CAS  PubMed  Google Scholar 

  • Saitoh Y, Terada N, Ohno N, Hamano A, Okumura N, Jin T, Saiki I, Ohno S (2014) Imaging of thrombosis and microcirculation in mouse lungs of initial melanoma metastasis with in vivo cryotechnique. Microvasc Res 91:73–83

    Article  CAS  PubMed  Google Scholar 

  • Shelnutt JA, Rousseau DL, Friedman JM, Simon SR (1979) Protein–heme interaction in hemoglobin: evidence for Raman difference spectroscopy. Proc Natl Acad Sci USA 76:4409–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiga T, Maeda N, Kon K (1990) Erythrocyte rheology. Crit Rev Oncol Hematol 10:9–48

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P, Allan YG, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Stuart J, Nash GB (1990) Red cell deformability and haematological disorders. Blood Rev 4:141–147

    Article  CAS  PubMed  Google Scholar 

  • Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–269

    CAS  PubMed  Google Scholar 

  • Takayama I, Fujii Y, Ohno S, Fujino MA (1994) Ultrastructural study of mast cells stimulated with compound 48/80 as revealed by quick-freezing method. Virchows Arch 424:287–294

    Article  CAS  PubMed  Google Scholar 

  • Takayama I, Fujii Y, Ohno S, Fujino MA (1995) Freeze-fracture immunocytochemistry for intracellular localization of serotonin in rat mast cells stimulated with compound 48/80. Virchows Arch 426:267–270

    Article  CAS  PubMed  Google Scholar 

  • Takayama I, Terada N, Baba T, Ueda H, Kato Y, Fujii Y, Ohno S (1999) “In vivo cryotechnique” in combination with replica immunoelectron microscopy for caveolin in smooth muscle cells. Histochem Cell Biol 112:443–445

    Article  CAS  PubMed  Google Scholar 

  • Takayama I, Terada N, Baba T, Ueda H, Fujii Y, Kato Y, Ohno S (2000) Dynamic ultrastructure of mouse pulmonary alveoli revealed by an in vivo cryotechnique in combination with freeze-substitution. J Anat 197:199–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Terada N, Ohno S (1998) Dynamic morphology of erythrocytes revealed by cryofixation technique. Acta Anat Nippon 73:587–593

    CAS  PubMed  Google Scholar 

  • Terada N, Ohno S (2004) Immunohistochemical application of cryotechniques to native morphology of cells and tissues. Acta Histochem Cytochem 37:339–345

    Article  Google Scholar 

  • Terada N, Fujii Y, Ueda H, Ohno S (1997) Immunocytochemical study of human erythrocyte membrane skeletons under stretching conditions by quick-freezing and deep-etching method. J Anat 190:397–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Terada N, Fujii Y, Kato Y, Ueda H, Baba T, Ohno S (1998a) Scanning electron microscopic study of erythrocyte shapes artificially jetted through tubes at different pressures by ‘in vitro cryotechnique for erythrocytes’. J Electron Microsc 47:489–493

    Article  CAS  Google Scholar 

  • Terada N, Kato Y, Fujii Y, Ueda H, Baba T, Ohno S (1998b) Scanning electron microscopic study of flowing erythrocytes in hepatic sinusoids as revealed by ‘in vivo cryotechnique’. J Electron Microsc 47:67–72

    Article  CAS  Google Scholar 

  • Terada N, Banno Y, Ohno N, Fujii Y, Murate T, Sarna JR, Hawkes R, Zea Z, Baba T, Ohno S (2004) Compartmentation of the mouse cerebellar cortex by sphingosine kinase. J Comp Neurol 469:119–127

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Ohno N, Saitoh S, Fujii Y, Ohguro H, Ohno S (2007a) Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the “in vivo cryotechnique”. Microsc Res Tech 70:634–639

    Article  PubMed  Google Scholar 

  • Terada N, Ohno N, Saitoh S, Ohno S (2007b) Immunohistochemical detection of hypoxia in mouse liver tissues treated with pimonidazole using “in vivo cryotechnique”. Histochem Cell Biol 128:253–261

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Ohno N, Saitoh S, Ohno S (2008) Application of “in vivo cryotechnique” to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy. J Struct Biol 163:147–154

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Saitoh Y, Saitoh S, Ohno N, Jin T, Ohno S (2010) Visualization of microvascular blood flow in mouse kidney and spleen by quantum dot injection with “in vivo cryotechnique”. Microvasc Res 80:491–498

    Article  PubMed  Google Scholar 

  • Torres Filho IP, Terner J, Pittman RN, Somera LG, Ward KR (2005) Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy. Am J Physiol Heart Circ Physiol 289:H488–H495

    Article  CAS  PubMed  Google Scholar 

  • van Harreveld A, Trubatch J (1975) Synaptic changes in frog brain after stimulation with potassium chloride. J Neurocytol 4:33–46

    Article  CAS  PubMed  Google Scholar 

  • Voccaro CA, Brody JS (1981) Structural features of alveolar wall basement membrane in the adult rat lung. J Cell Biol 91:427–437

    Article  Google Scholar 

  • Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, Kretzschmar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315

    Article  PubMed  Google Scholar 

  • Wood BR, Tait B, McNaughton D (2001) Micro-Raman characterization of the R to T state transition of haemoglobin within a single living erythrocyte. Biochim Biophys Acta 1539:58–70

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Terada N, Fujii Y, Baba T, Ohno S (1998) Morphological study by an ‘in vivo cryotechnique’ of the shape of erythrocytes circulating in large blood vessels. J Anat 193:73–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue M, Baba T, Terada N, Kato Y, Fujii Y, Ohno S (2001) Morphological study of erythrocyte shapes in red pulp of mouse spleens revealed by an in vivo cryotechnique. Histol Histopathol 16:123–129

    CAS  PubMed  Google Scholar 

  • Yoshimura A, Ohno S, Nakano K, Oniki H, Inui K, Ideura T, Koshikawa S (1991) Three-dimensional ultrastructure of anionic sites of the glomerular basement membrane by a quick-freezing and deep etching method using a cationic tracer. Histochemistry 96:107–113

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Leng CG, Kato Y, Ohno S (1997) Ultrastructural study of glomerular capillary loops at different perfusion pressures as revealed by quick-freezing, freeze-substitution and conventional fixation methods. Nephron 76:452–459

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Leng CG, Kato Y, Terada N, Fujii Y, Ohno S (1998) Ultrastructural study of anionic sites in glomerular basement membranes at different perfusion pressures by quick-freezing and deepetching method. Nephron 78:88–95

    Article  CAS  PubMed  Google Scholar 

  • Zea-Aragon A, Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2004a) Effects of anoxia on serum immunoglobulin and albumin leakage through blood–brain barrier in mouse cerebellum as revealed by cryotechniques. J Neurosci Methods 138:89–95

    Article  CAS  PubMed  Google Scholar 

  • Zea-Aragon Z, Terada N, Ohno N, Fujii Y, Baba T, Yoshida M, Ohtsuki K, Ohnishi M, Ohno S (2004b) Replica immunoelectron microscopic study of the upper surface layer in rat mandibular condylar cartilage by a quick-freezing method. Histochem Cell Biol 121:255–259

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Ohno N, Terada N, Saitoh S, Fujii Y, Ohno S (2007) Involvement of follicular basement membrane and vascular endothelium in blood–follicle barrier formation of mice revealed by ‘in vivo cryotechnique’. Reproduction 134:307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Ohno.

Ethics declarations

Conflict of interest

None.

Additional information

Shinichi Ohno: Retired at the end of March 2015, and is now an Emeritus Professor at the University of Yamanashi.

Yurika Saitoh: Moved to Teikyo University of Science in April 2016.

Nobuhiko Ohno: Moved to the National Institute for Physiological Science in April 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, S., Saitoh, Y., Ohno, N. et al. Renaissance of morphological studies: the examination of functional structures in living animal organs using the in vivo cryotechnique. Anat Sci Int 92, 55–78 (2017). https://doi.org/10.1007/s12565-016-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0355-9

Keywords

Navigation