Skip to main content

Advertisement

Log in

The gastrin-releasing peptide system in the spinal cord mediates masculine sexual function

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The lumbar spinal segments are of particular interest because they are sexually dimorphic and contain several neuronal circuits that are important in eliciting male sexual responses such as erection and ejaculation. Gastrin-releasing peptide (GRP) is a member of the bombesin-like peptide family first isolated from the porcine stomach. A collection of neurons in the lumbar spinal cord (L3–L4 level) of male rats projects to the lower lumbar spinal cord (L5–L6 level), releasing GRP onto somatic and autonomic centers known to regulate male sexual reflexes. All these target neurons express and localize specific receptors for GRP. This system of GRP neurons is sexually dimorphic, being prominent in male rats but vestigial in females. The system is completely feminine in genetically XY rats with a dysfunctional androgen receptor gene, demonstrating the androgen-dependent nature of the dimorphism. Pharmacological stimulation of GRP receptors in this spinal region remarkably restores sexual reflexes in castrated male rats. Exposure of male rats to a severe traumatic stress decreases the local content and the axonal distribution of GRP in the lumbar spinal cord and results in an attenuation of penile reflexes in vivo. Administration of a specific agonist for GRP receptors restores penile reflexes in the traumatic stress-exposed male rats. This review summarizes findings on this recently identified spinal GRP system, which may be vulnerable to stress, that controls male reproductive function. The identification of a male-specific neuronal system regulating sexual functions offers new avenues for potential therapeutic approaches to masculine reproductive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anastasi A, Erspamer V, Bucci M (1971) Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27:166–167

    Article  CAS  PubMed  Google Scholar 

  • Bardin CW, Bullock L, Blackburn WR, Sherins RJ, Vanha-Perttula T (1971) Testosterone metabolism in the androgen-insensitive rat: a model for testicular feminization. Birth Defects Orig Artic Ser 7:185–192

    CAS  PubMed  Google Scholar 

  • Battey J, Wada E (1991) Two distinct receptor subtypes for mammalian bombesin-like peptides. Trends Neurosci 14:524–528

    Article  CAS  PubMed  Google Scholar 

  • Battey JF, Way JM, Corjay MH et al (1991) Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci USA 88:395–399

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Priebe S, Graf KJ, Kurten I, Baumgartner A (1994) Psychological and endocrine abnormalities in refugees from East Germany: part II. Serum levels of cortisol, prolactin, luteinizing hormone, follicle stimulating hormone, and testosterone. Psychiatry Res 51:75–85

    Article  CAS  PubMed  Google Scholar 

  • Breedlove SM (1985) Hormonal control of the anatomical specificity of motoneuron-to-muscle innervation in rats. Science 227:1357–1359

    Article  CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 210:564–566

    Article  CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1981) Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res 225:297–307

    Article  CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1983a) Hormonal control of a developing neuromuscular system. I. Complete demasculinization of the male rat spinal nucleus of the bulbocavernosus using the anti-androgen flutamide. J Neurosci 3:417–423

    CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1983b) Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci 3:424–432

    CAS  PubMed  Google Scholar 

  • Coolen LM (2005) Neural control of ejaculation. J Comp Neurol 493:39–45

    Article  PubMed  Google Scholar 

  • Cosgrove DJ, Gordon Z, Bernie JE et al (2002) Sexual dysfunction in combat veterans with post-traumatic stress disorder. Urology 60:881–884

    Article  PubMed  Google Scholar 

  • Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152:703–712

    Article  CAS  PubMed  Google Scholar 

  • Fathi Z, Corjay MH, Shapira H et al (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984

    CAS  PubMed  Google Scholar 

  • Forger NG (2009) The organizational hypothesis and final common pathways: sexual differentiation of the spinal cord and peripheral nervous system. Horm Behav 55:605–610

    Article  CAS  PubMed  Google Scholar 

  • Forger NG, Breedlove SM (1986) Sexual dimorphism in human and canine spinal cord: role of early androgen. Proc Natl Acad Sci USA 83:7527–7531

    Article  CAS  PubMed  Google Scholar 

  • Forger NG, Fishman RB, Breedlove SM (1992) Differential effects of testosterone metabolites upon the size of sexually dimorphic motoneurons in adulthood. Horm Behav 26:204–213

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LA, Kurz EM, Sengelaub DR (1990) Androgen regulation of dendritic growth and retraction in the development of a sexually dimorphic spinal nucleus. J Neurosci 10:935–946

    CAS  PubMed  Google Scholar 

  • Hart BL (1973) Effects of testosterone propionate and dihydrotestosterone on penile morphology and sexual reflexes of spinal male rats. Horm Behav 4:239–246

    Article  CAS  Google Scholar 

  • Hart BL (1979) Activation of sexual reflexes of male rats by dihydrotestosterone but not estrogen. Physiol Behav 23:107–109

    Article  CAS  PubMed  Google Scholar 

  • Hart BL, Haugen CM (1968) Activation of sexual reflexes in male rats by spinal implantation of testosterone. Physiol Behav 3:735–738

    Article  Google Scholar 

  • Hull EM, Dominguez JM (2007) Sexual behavior in male rodents. Horm Behav 52:45–55

    Article  CAS  PubMed  Google Scholar 

  • Ju G, Melander T, Ceccatelli S, Hokfelt T, Frey P (1987) Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat. Neuroscience 20:439–456

    Article  CAS  PubMed  Google Scholar 

  • Kaplan HS (1988) Anxiety and sexual dysfunction. J Clin Psychiatry 49(Suppl):21–25

    PubMed  Google Scholar 

  • Kaplan HS (1989) Post-traumatic stress syndrome and sexual dysfunction. J Sex Marital Ther 15:74–77

    CAS  PubMed  Google Scholar 

  • Karatsoreos IN, Romeo RD, McEwen BS, Silver R (2006) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. Eur J Neurosci 23:1047–1053

    Article  PubMed  Google Scholar 

  • Khan S, Liberzon I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl) 172:225–229

    Article  CAS  Google Scholar 

  • Kohda K, Harada K, Kato K et al (2007) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148:22–33

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Sano Y (1984) Sexual differences in the topographical distribution of serotonergic fibers in the anterior column of rat lumbar spinal cord. Anat Embryol (Berl) 170:117–121

    Article  CAS  Google Scholar 

  • Kojima M, Takeuchi Y, Goto M, Sano Y (1983) Immunohistochemical study on the localization of serotonin fibers and terminals in the spinal cord of the monkey (Macaca fuscata). Cell Tissue Res 229:23–36

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Matsuura T, Kimura H, Nojyo Y, Sano Y (1984) Fluorescence histochemical study on the noradrenergic control to the anterior column of the spinal lumbosacral segments of the rat and dog, with special reference to motoneurons innervating the perineal striated muscles (Onuf’s nucleus). Histochemistry 81:237–241

    Article  CAS  PubMed  Google Scholar 

  • Kreuz LE, Rose RM, Jennings JR (1972) Suppression of plasma testosterone levels and psychological stress. A longitudinal study of young men in Officer Candidate School. Arch Gen Psychiatry 26:479–482

    CAS  PubMed  Google Scholar 

  • Kroog GS, Jensen RT, Battey JF (1995) Mammalian bombesin receptors. Med Res Rev 15:389–417

    Article  CAS  PubMed  Google Scholar 

  • Kurz EM, Sengelaub DR, Arnold AP (1986) Androgens regulate the dendritic length of mammalian motoneurons in adulthood. Science 232:395–398

    Article  CAS  PubMed  Google Scholar 

  • Ladenheim EE, Taylor JE, Coy DH, Moore KA, Moran TH (1996) Hindbrain GRP receptor blockade antagonizes feeding suppression by peripherally administered GRP. Am J Physiol 271:R180–R184

    CAS  PubMed  Google Scholar 

  • Ladenheim EE, Behles RR, Bi S, Moran TH (2009) Gastrin-releasing peptide messenger ribonucleic acid expression in the hypothalamic paraventricular nucleus is altered by melanocortin receptor stimulation and food deprivation. Endocrinology 150:672–678

    Article  CAS  PubMed  Google Scholar 

  • Letourneau EJ, Schewe PA, Frueh BC (1997) Preliminary evaluation of sexual problems in combat veterans with PTSD. J Trauma Stress 10:125–132

    CAS  PubMed  Google Scholar 

  • Liberzon I, Krstov M, Young EA (1997) Stress–restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:443–453

    Article  CAS  PubMed  Google Scholar 

  • Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11:11–17

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Tache Y (2000) Bombesin and the brain–gut axis. Peptides 21:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Mason JW, Giller EL, Kosten TR (1988) Serum testosterone differences between patients with schizophrenia and those with affective disorder. Biol Psychiatry 23:357–366

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A (2001) Androgen stimulates neuronal plasticity in the perineal motoneurons of aged male rats. J Comp Neurol 430:389–395

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Micevych PE, Arnold AP (1988) Androgen regulates synaptic input to motoneurons of the adult rat spinal cord. J Neurosci 8:4168–4176

    CAS  PubMed  Google Scholar 

  • McDonald TJ, Jornvall H, Nilsson G et al (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233

    Article  CAS  PubMed  Google Scholar 

  • Merali Z, Bedard T, Andrews N et al (2006) Bombesin receptors as a novel anti-anxiety therapeutic target: BB1 receptor actions on anxiety through alterations of serotonin activity. J Neurosci 26:10387–10396

    Article  CAS  PubMed  Google Scholar 

  • Meston CM, Frohlich PF (2000) The neurobiology of sexual function. Arch Gen Psychiatry 57:1012–1030

    Article  CAS  PubMed  Google Scholar 

  • Minamino N, Kangawa K, Matsuo H (1983) Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 114:541–548

    Article  CAS  PubMed  Google Scholar 

  • Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nat Neurosci 7:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Mulchahey JJ, Ekhator NN, Zhang H, Kasckow JW, Baker DG, Geracioti TD Jr (2001) Cerebrospinal fluid and plasma testosterone levels in post-traumatic stress disorder and tobacco dependence. Psychoneuroendocrinology 26:273–285

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S (1980) Onuf’s nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res 191:337–344

    Article  CAS  PubMed  Google Scholar 

  • Newton BW (1992) A sexually dimorphic population of galanin-like neurons in the rat lumbar spinal cord: functional implications. Neurosci Lett 137:119–122

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP, Zhang X, Hokfelt T (1999) An immunohistochemical investigation of the opioid cell column in lamina X of the male rat lumbosacral spinal cord. Neurosci Lett 270:9–12

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Ibata Y (1994) GRP immunoreactivity shows a day–night difference in the suprachiasmatic nuclear soma and efferent fibers: comparison to VIP immunoreactivity. Neurosci Lett 181:165–168

    Article  CAS  PubMed  Google Scholar 

  • Onufrowicz B (1899) Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J Nerv Mental Dis 26:498–504

    Article  Google Scholar 

  • Panula P, Nieminen O, Falkenberg M, Auvinen S (1988) Localization and development of bombesin/GRP-like immunoreactivity in the rat central nervous system. Ann N Y Acad Sci 547:54–69

    Article  CAS  PubMed  Google Scholar 

  • Phan DC, Newton BW (1999) Cholecystokinin-8-like immunoreactivity is sexually dimorphic in a midline population of rat lumbar neurons. Neurosci Lett 276:165–168

    Article  CAS  PubMed  Google Scholar 

  • Pitman RK (1997) Overview of biological themes in PTSD. Ann N Y Acad Sci 821:1–9

    Article  CAS  PubMed  Google Scholar 

  • Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS (1995) Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271–321

    CAS  PubMed  Google Scholar 

  • Rajfer J (2000) Relationship between testosterone and erectile dysfunction. Rev Urol 2:122–128

    CAS  PubMed  Google Scholar 

  • Retana-Marquez S, Bonilla-Jaime H, Vazquez-Palacios G, Martinez-Garcia R, Velazquez-Moctezuma J (2003) Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm Behav 44:327–337

    Article  CAS  PubMed  Google Scholar 

  • Roesler R, Lessa D, Venturella R et al (2004) Bombesin/gastrin-releasing peptide receptors in the basolateral amygdala regulate memory consolidation. Eur J Neurosci 19:1041–1045

    Article  PubMed  Google Scholar 

  • Rosen RC, Sachs BD (2000) Central mechanisms in the control of penile erection: current theory and research. Neurosci Biobehav Rev 24:503–505

    Article  CAS  PubMed  Google Scholar 

  • Sachs BD (1982) Role of striated penile muscles in penile reflexes, copulation, and induction of pregnancy in the rat. J Reprod Fertil 66:433–443

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H (2010) The neurobiology of psychogenic erectile dysfunction in the spinal cord. J Androl. doi:10.2164/jandrol.110.010041

  • Sakamoto H, Kawata M (2006) Distribution of gastrin releasing peptide in the rat lumbar spinal cord is sexually dimorphic and regulated by androgen. Front Neuroendocrinol 27:46

    Article  Google Scholar 

  • Sakamoto H, Kawata M (2009) Gastrin-releasing peptide system in the spinal cord controls male sexual behaviour. J Neuroendocrinol 21:432–435

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Matsuda K-I, Zuloaga DG et al (2008) Sexually dimorphic gastrin releasing peptide system in the spinal cord controls male reproductive functions. Nat Neurosci 11:634–636

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Matsuda K-I, Zuloaga DG et al (2009a) Stress affects a gastrin-releasing peptide system in the spinal cord that mediates sexual function: implications for psychogenic erectile dysfunction. PLoS ONE 4:e4276

    Article  PubMed  Google Scholar 

  • Sakamoto H, Takanami K, Zuloaga DG et al (2009b) Androgen regulates the sexually dimorphic gastrin-releasing peptide system in the lumbar spinal cord that mediates male sexual function. Endocrinology 150:3672–3679

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Arii T, Kawata M (2010) High-voltage electron microscopy reveals direct synaptic inputs from a spinal gastrin-releasing peptide system to neurons of the spinal nucleus of bulbocavernosus. Endocrinology 151:417–421

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Mizuno N, Konishi A (1978) Localization of motoneurons innervating perineal muscles: a HRP study in cat. Brain Res 140:149–154

    Article  CAS  PubMed  Google Scholar 

  • Seidman SN, Roose SP (2001) Sexual dysfunction and depression. Curr Psychiatry Rep 3:202–208

    Article  CAS  PubMed  Google Scholar 

  • Sengelaub DR, Forger NG (2008) The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav 53:596–612

    Article  CAS  PubMed  Google Scholar 

  • Shinohara K, Tominaga K, Isobe Y, Inouye ST (1993) Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y. J Neurosci 13:793–800

    CAS  PubMed  Google Scholar 

  • Shumyatsky GP, Tsvetkov E, Malleret G et al (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111:905–918

    Article  CAS  PubMed  Google Scholar 

  • Sun YG, Chen ZF (2007) A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448:700–703

    Article  CAS  PubMed  Google Scholar 

  • Sun XQ, Xu C, Leclerc P, Benoit G, Giuliano F, Droupy S (2009a) Spinal neurons involved in the control of the seminal vesicles: a transsynaptic labeling study using pseudorabies virus in rats. Neuroscience 158:786–797

    Article  CAS  PubMed  Google Scholar 

  • Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF (2009b) Cellular basis of itch sensation. Science 325:1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Swain MG (2008) Gastrin-releasing peptide and pruritus: more than just scratching the surface. J Hepatol 48:681–683

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Morinobu S, Iwamoto Y, Yamawaki S (2006) Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology (Berl) 189:165–173

    Article  CAS  Google Scholar 

  • Truitt WA, Coolen LM (2002) Identification of a potential ejaculation generator in the spinal cord. Science 297:1566–1569

    Article  CAS  PubMed  Google Scholar 

  • Truitt WA, Shipley MT, Veening JG, Coolen LM (2003) Activation of a subset of lumbar spinothalamic neurons after copulatory behavior in male but not female rats. J Neurosci 23:325–331

    CAS  PubMed  Google Scholar 

  • Vizzard MA, Erdman SL, de Groat WC (1995) Increased expression of neuronal nitric oxide synthase (NOS) in visceral neurons after nerve injury. J Neurosci 15:4033–4045

    CAS  PubMed  Google Scholar 

  • Wada E, Way J, Shapira H et al (1991) cDNA cloning, characterization and brain region-specific expression of neuromedin B-preferring bombesin receptor. Neuron 6:421–430

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yaici ED, Conrath M et al (2005) Galanin and neurokinin-1 receptor immunoreactive [corrected] spinal neurons controlling the prostate and the bulbospongiosus muscle identified by transsynaptic labeling in the rat. Neuroscience 134:1325–1341

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Giuliano F, Yaici ED et al (2006) Identification of lumbar spinal neurons controlling simultaneously the prostate and the bulbospongiosus muscles in the rat. Neuroscience 138:561–573

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Wada E, Wada K (2000) Bombesin-like peptides: studies on food intake and social behaviour with receptor knock-out mice. Ann Med 32:519–529

    Article  CAS  PubMed  Google Scholar 

  • Yang LY, Verhovshek T, Sengelaub DR (2004) Brain-derived neurotrophic factor and androgen interact in the maintenance of dendritic morphology in a sexually dimorphic rat spinal nucleus. Endocrinology 145:161–168

    Article  CAS  PubMed  Google Scholar 

  • Yarbrough WG, Quarmby VE, Simental JA et al (1990) A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem 265:8893–8900

    CAS  PubMed  Google Scholar 

  • Yehuda R (2002) Post-traumatic stress disorder. N Engl J Med 346:108–114

    Article  CAS  PubMed  Google Scholar 

  • Yoshii T, Sakamoto H, Kawasaki M et al (2008) The single-prolonged stress paradigm alters both the morphology and stress response of magnocellular vasopressin neurons. Neuroscience 156:466–474

    Article  CAS  PubMed  Google Scholar 

  • Zuloaga DG, Puts DA, Jordan CL, Breedlove SM (2008) The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm Behav 53:613–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Damian G. Zuloaga (University of Arizona College of Medicine-Phoenix, AZ, USA) for valuable discussions, reading the manuscript and collaboration. I am grateful to Drs. Mitsuhiro Kawata, Ken-Ichi Matsuda, Keiko Takanami, Hisayuki Hongu, Nobuko Nishiura, Etsuko Wada, Keiji Wada, Tatsuo Arii, Tatsuya Sakamoto, Cynthia L. Jordan and S. Marc Breedlove for their valuable discussions and collaborations. This work was supported by Grants-in-Aid Scientific Research [Encouragement of Young Scientists (A): no. 21680031, (B): no. 19700319] from the Ministry of Education, Science, Sports, Culture and Technology, Japan; by Grants-in-Aid for Young Scientists (Start-up) from Okayama University, Japan; by The Naito Memorial Grant for Natural Science Researches, Japan; by The Uehara Memorial Foundation, Japan; by The Inamori Foundation, Japan; by Narishige Neuroscience Research Foundation, Japan; and by Co-operative Study by High-voltage Electron Microscopy (H-1250M) from the National Institute for Physiological Sciences, Okazaki, Japan. All experimental procedures for the author’s research project cited in the present review have been authorized by the Committee for Animal Research, Kyoto Prefectural University of Medicine and Okayama University, Japan and/or the Institutional Animal Care and Use Committee of Michigan State University, MI, USA. The author is a recipient of the Incitement Award of the Japanese Association of Anatomists in the fiscal year 2009, and a part of the present work was presented at the 115th annual meeting in Morioka, Iwate, Japan, 28–30 March 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, H. The gastrin-releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int 86, 19–29 (2011). https://doi.org/10.1007/s12565-010-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-010-0097-z

Keywords

Navigation