Skip to main content

Advertisement

Log in

A simple and rapid determination method for zooxanthellal genetic diversity in giant clams using multiplex PCR

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Giant clams (tridacnid shellfishes) contain threatened species and represent important fishery resources. They establish a symbiotic relationship with zooxanthellae (Symbiodinium) by receiving photosynthetic products from these symbiotic algae. Symbiodinium are divided into various phylotypes (A–I); each physiological character attributed to a certain phylotype may be different and may affect infectivity with clams. However, lack of information related to Symbiodinium diversities in giant clams causes difficulties in the culture of these clams, especially during the artificial infection process of Symbiodinium sources to clam larvae, which leads to an extremely low success rate in establishing infection. In this report, we have developed a multiplex PCR method, suitable for analyzing Symbiodinium phylotypes in giant clams. We have designed new specific PCR primer sets for three phylotypes (A, C and D) that give different product sizes and thus are distinguishable from each other on an electrophoresis gel. The method is reliable, highly sensitive and most practicable for aquaculture using one PCR reaction. We also performed a trial case of the method for extracted Symbiodinium DNA from clams and revealed an unexpected heterogeneity of phylotypes even though the clams tested were kept in the same pond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heslinga GA, Perron FE, Orak O (1984) Mass culture of giant clams (F. Tridacnidae) in Palau. Aquaculture 39:197–215

    Article  Google Scholar 

  2. Kurihara T, Yamada H, Inoue K, Iwai K, Hatta M (2013) Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater. PLoS One 8(4):e61156. doi:10.1371/journal.pone.006156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor DL (1969) Identity of zooxanthellae isolated from some Pacific Tridacnidae. J Phycol 5:336–340

    Article  CAS  PubMed  Google Scholar 

  4. Fitt WK, Fisher CR, Trench RK (1986) Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of juvenile tridacnid clams. Aquaculture 55:5–22

    Article  Google Scholar 

  5. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  6. Norton JH, Shepherd MA, Long HM, Fitt WK (1992) The zooxanthellae tubular system in the giant clam. Biol Bull 183:503–506

    Article  Google Scholar 

  7. Beckvar N (1981) Cultivation, spawning and growth of the giant clams Tridacna gigas, Tridacna derasa and Tridacna squamosa in Palau, Caroline Islands. Aquaculture 24:21–30

    Article  Google Scholar 

  8. Trench RK, Wethey DS, Porter JW (1981) Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biol Bull 161:180–198

    Article  Google Scholar 

  9. Klumpp DW, Lucas JS (1994) Nutritional ecology of the giant clam Tridacna tevoroa and T. derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol Prog Ser 107:147–156

    Article  Google Scholar 

  10. Streamer M, Griffiths DJ, Thinh L (1988) The products of photosynthesis by zooxanthellae (Symbiodinium microadriaticum) of Tridacna gigas and their transfer to the host. Symbiosis 6:237–252

    CAS  Google Scholar 

  11. Maruyama T, Heslinga GA (1997) Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol 127:473–477

    Article  Google Scholar 

  12. Hirose E, Iwai K, Maruyama T (2006) Establishment of the photosymbiosis in the early ontogeny of the three giant clams. Mar Biol 148:551–558

    Article  Google Scholar 

  13. Fitt WK, Trench RK (1981) Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, Bivalvia). Biol Bull 161:213–235

    Article  Google Scholar 

  14. Iwai K, Matsuoka H (2005) Seed production of giant clams. Report of Okinawa Fisheries Research and Extension Center. Fisc Year Heisei 15:174–178 (in Japanese)

    Google Scholar 

  15. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  16. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  PubMed  Google Scholar 

  17. Kinzie RA, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  PubMed  Google Scholar 

  18. Rowan R (2004) Thermal adaptations in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita H, Suzuki G, Hayashibara T, Koike K (2012) Acropora recruits harbor “rare” Symbiodinium in the environmental pool. Coral Reefs 16:129–138

    Google Scholar 

  20. Yamashita H, Suzuki G, Kai S, Hayashibara T, Koike K (2014) Establishment of coral-algal symbiosis requires attraction and selection. PLoS One 9(5):e97003. doi:10.1371/journal.pone.0097003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161

    Article  CAS  Google Scholar 

  22. Deboer TS, Baker AC, Erdmann MV, Ambariyanto Jones PR, Barber PH (2012) Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Mar Ecol Prog Ser 444:117–132

    Article  CAS  Google Scholar 

  23. Belda-Baillie CA, Sison M, Silvestre V, Villamor K, Monje V, Gomez ED, Baillie BK (1999) Evidence for changing symbiotic algae in juvenile tridacnids. J Exp Mar Biol Ecol 241:207–221

    Article  Google Scholar 

  24. Correa AM, McDonald MD, Baker AC (2009) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411

    Article  CAS  Google Scholar 

  25. Yamashita H, Suzuki G, Hayashibara T, Koike K (2011) Do corals select zooxanthellae by alternative discharge? Mar Biol 158:87–100

    Article  Google Scholar 

  26. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Thomas C (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kong RYC, Lee SKY, Law TWF, Law SHW, Wu RSS (2002) Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. Water Res 36:2802–2812

    Article  CAS  PubMed  Google Scholar 

  28. Sekino M (2009) In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers: is the natural resource at stake? Fish Sci 75:819–831

    Article  CAS  Google Scholar 

  29. Nagai S (2011) Development of a multiplex PCR assay for simultaneous detection of six Alexandrium species (Dinophyceae). J Phycol 47:703–708

    Article  CAS  PubMed  Google Scholar 

  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  31. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl 2):71–74

    Article  Google Scholar 

  32. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

  33. Belda-Baillie CA, Leggat W, Yellowlees D (1998) Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment. Mar Ecol Prog Ser 170:131–141

    Article  CAS  Google Scholar 

  34. LaJeunesse TC, Reyes-Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727

    Article  Google Scholar 

  35. Abrego D, Van Oppen MJH, Willis BL (2009) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. S. Kondo, Okinawa Prefectural Fisheries Research and Extension Center for providing us with samples of giant clams. This work was supported by JSPS KAKENHI grant no. 26660164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Koike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, S., Yamashita, H., Liao, L.M. et al. A simple and rapid determination method for zooxanthellal genetic diversity in giant clams using multiplex PCR. Fish Sci 82, 747–753 (2016). https://doi.org/10.1007/s12562-016-1004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-1004-x

Keywords

Navigation