Skip to main content
Log in

Glyoxalase 1 gene of Coilia nasus: molecular characterization and differential expression during transport stress

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The estuarine tapertail anchovy Coilia nasus is a widely distributed and commercially important aquaculture species. It responds strongly to stresses, such as netting, loading, and transport, which inevitably always induces tissue injury or even death. The glyoxalase 1 gene (Glo1) is very important in many physiological processes and diseases. To understand how transport induces changes in Glo1 expression, we cloned the C. nasus Glo1 gene (CnGlo1). Its full-length cDNA is 1033 bp, with a 549-bp open reading frame, which encodes a 182-amino acid protein. CnGlo1 is predicted to contain a typical glyoxalase domain (amino acids 26–169). CnGlo1 mRNA is expressed ubiquitously, but more strongly in the brain, liver, heart, head kidney, and gill than in the kidney, intestine, muscle, and spleen. Results of the reverse transcription–quantitative PCR analysis of the tissues of stressed fish revealed a 2.5- to 16.1-fold increase in CnGlo1 expression in the liver and a 2.0- to 4.8-fold increase in the brain. Protein expression was determined with western blotting, and the expression pattern was similar to that of the mRNA. Here, we report the molecular cloning, sequencing, and differential expression of the CnGlo1 gene and the effects of stress on CnGlo1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gale CP, Grant PJ (2004) The characterisation and functional analysis of the human glyoxalase-1 gene using methods of bioinformatics. Gene 340:251–260

    Article  CAS  PubMed  Google Scholar 

  2. Rabbani N, Thornalley PJ (2011) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309–317

    Article  CAS  PubMed  Google Scholar 

  3. Urscher M, Alisch R, Deponte M (2011) The glyoxalase system of malaria parasites—implications for cell biology and general glyoxalase research. Semin Cell Dev Biol 22:262–270

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty S, Gogoi M, Chakravortty D (2015) Lactoylglutathione lyase, a critical enzyme in methylglyoxal detoxification, contributes to survival of Salmonella in the nutrient rich environment. Virulence 6:50–65

    Article  CAS  PubMed  Google Scholar 

  5. Chocholaty M, Jachymova M, Schmidt M, Havlova K, Krepelova A, Zima T, Babjuk M, Kalousova M (2015) Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol 36:2121–2126

    Article  CAS  PubMed  Google Scholar 

  6. Chen F, Wollmer MA, Hoerndli F, Munch G, Kuhla B, Rogaev EI, Tsolaki M, Papassotiropoulos A, Gotz J (2004) Role for glyoxalase I in Alzheimer’s disease. Proc Natl Acad Sci USA 101:7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hambsch B (2011) Altered glyoxalase 1 expression in psychiatric disorders: cause or consequence? Semin Cell Dev Biol 22:302–308

    Article  CAS  PubMed  Google Scholar 

  8. Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM, Ellison JA, Schadt EE, Verma IM, Lockhart DJ, Barlow C (2005) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662–666

    Article  CAS  PubMed  Google Scholar 

  9. Kuhla B, Boeck K, Luth HJ, Schmidt A, Weigle B, Schmitz M, Ogunlade V, Munch G, Arendt T (2006) Age-dependent changes of glyoxalase I expression in human brain. Neurobiol Aging 27:815–822

    Article  CAS  PubMed  Google Scholar 

  10. Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Munch G, Luth HJ (2007) Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 28:29–41

    Article  CAS  PubMed  Google Scholar 

  11. Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, Termini J, Meredith SC, Nobrega MA, Palmer AA (2012) Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest 122:2306–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin CC, Yin MC (2008) Antiglycative and anti-VEGF effects of S-ethyl cysteine and S-propyl cysteine in kidney of diabetic mice. Mol Nutr Food Res 52:1358–1364

    Article  CAS  PubMed  Google Scholar 

  13. Santel T, Pflug G, Hemdan NY, Schäfer A, Hollenbach M, Buchold M, Hintersdorf A, Lindner I, Otto A, Bigl M, Oerlecke I, Hutschenreuter A, Sack U, Huse K, Groth M, Birkemeyer C, Schellenberger W, Gebhardt R, Platzer M, Weiss T, Vijayalakshmi MA, Krüger M, Birkenmeier G (2008) Curcumin inhibits glyoxalase 1—a possible link to its anti-inflammatory and anti-tumor activity. PLoS One 3:e3508

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim KM, Kim YS, Jung DH, Lee J, Kim JS (2012) Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp Cell Res 318:152–159

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Xu Y, Xu L, Wang J, Wu W, Xu L, Yan Y (2015) Analysis of differentially expressed proteins in zebrafish (Danio rerio) embryos exposed to chlorpyrifos. Comp Biochem Phys C 167:183–189

    CAS  Google Scholar 

  16. Andreassen R, Lunner S, Hoyheim B (2009) Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar). BMC Genom 10:502

    Article  Google Scholar 

  17. Elia AC, Fanetti A, Dorr AJ, Taticchi MI (2008) Effects of concentrated drinking water injection on glutathione and glutathione-dependent enzymes in liver of Cyprinus carpio L. Chemosphere 72:791–796

    Article  CAS  PubMed  Google Scholar 

  18. Jorgens K, Stoll SJ, Pohl J, Fleming TH, Sticht C, Nawroth PP, Hammes HP, Kroll J (2015) High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64:213–225

    Article  PubMed  Google Scholar 

  19. Antognelli C, Romani R, Baldracchini F, De Santis A, Andreani G, Talesa V (2003) Different activity of glyoxalase system enzymes in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 142:297–305

    Article  CAS  PubMed  Google Scholar 

  20. Regoli F, Pellegrini D, Winston GW, Gorbi S, Giuliani S, Virno-Lamberti C, Bompadre S (2002) Application of biomarkers for assessing the biological impact of dredged materials in the Mediterranean: the relationship between antioxidant responses and susceptibility to oxidative stress in the red mullet (Mullus barbatus). Mar Pollut Bull 44:912–922

    Article  CAS  PubMed  Google Scholar 

  21. Jiang T, Yang J, Liu H, Shen XQ (2012) Life history of Coilia nasus from the Yellow Sea inferred from otolith Sr:Ca ratios. Environ Biol Fish 95:503–508

    Article  Google Scholar 

  22. Du F, Xu G, Nie Z, Xu P, Gu R (2014) Transcriptome analysis gene expression in the liver of Coilia nasus during the stress response. BMC Genom 15:558

    Article  Google Scholar 

  23. Du F, Xu G, Nie Z, Xu P, Gu R (2014) Molecular characterization and differential expression of the myostatin gene in Coilia nasus. Gene 543:153–160

    Article  CAS  PubMed  Google Scholar 

  24. Ariza A, Vickers TJ, Greig N, Fairlamb AH, Bond CS (2005) Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:769–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Espartero J, Sanchez I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  CAS  PubMed  Google Scholar 

  26. Inoue Y, Maeta K, Nomura W (2011) Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22:278–284

    Article  CAS  PubMed  Google Scholar 

  27. Kim NS, Umezawa Y, Ohmura S, Kato S (1993) Human glyoxalase I cDNA cloning, expression, and sequence similarity to glyoxalase I from Pseudomonas putida. J Biol Chem 268:11217–11221

    CAS  PubMed  Google Scholar 

  28. Lu T, Creighton DJ, Antoine M, Fenselau C, Lovett PS (1994) The gene encoding glyoxalase I from Pseudomonas putida: cloning, overexpression, and sequence comparisons with human glyoxalase I. Gene 150:93–96

    Article  CAS  PubMed  Google Scholar 

  29. McMurray KM, Distler MG, Sidhu PS, Cook JM, Arnold LA, Palmer AA, Plant LD (2014) Glo1 inhibitors for neuropsychiatric and anti-epileptic drug development. Biochem Soc T 42:461–467

    Article  CAS  Google Scholar 

  30. Wu S, Zhang X, He Y, Shuai J, Chen X, Ling E (2010) Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev Comp Immunol 34:1191–1198

    Article  CAS  PubMed  Google Scholar 

  31. Xue M, Rabbani N, Thornalley PJ (2011) Glyoxalase in ageing. Semin Cell Dev Biol 22:293–301

    Article  CAS  PubMed  Google Scholar 

  32. Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    Article  CAS  PubMed  Google Scholar 

  33. Thornalley PJ (2003) Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc T 31:1343–1348

    Article  CAS  Google Scholar 

  34. Ridderstrom M, Mannervik B (1996) The primary structure of monomeric yeast glyoxalase I indicates a gene duplication resulting in two similar segments homologous with the subunit of dimeric human glyoxalase I. Biochem J 316(Pt 3):1005–1006

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cameron AD, Olin B, Ridderstrom M, Mannervik B, Jones TA (1997) Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J 16:3386–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cameron AD, Ridderstrom M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999) Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry 38:13480–13490

    Article  CAS  PubMed  Google Scholar 

  37. Clelland JD, Thornalley PJ (1991) S-2-hydroxyacylglutathione-derivatives: enzymatic preparation, purification and characterisation. J Chem Soc Perk T 1:3009–3015

    Article  Google Scholar 

  38. Himo F, Siegbahn PE (2001) Catalytic mechanism of glyoxalase I: a theoretical study. J Am Chem Soc 123:10280–10289

    Article  CAS  PubMed  Google Scholar 

  39. Inoue Y, Tsujimoto Y, Kimura A (1998) Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983

    Article  CAS  PubMed  Google Scholar 

  40. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  41. Beisswenger PJ, Howell SK, Nelson RG, Mauer M, Szwergold BS (2003) Alpha-oxoaldehyde metabolism and diabetic complications. Biochem Soc T 31:1358–1363

    Article  CAS  Google Scholar 

  42. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    Article  CAS  PubMed  Google Scholar 

  43. Rabbani N, Thornalley P (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42:1133–1142

    Article  CAS  PubMed  Google Scholar 

  44. Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27:565–573

    Article  CAS  PubMed  Google Scholar 

  45. AluruN Vijayan MM (2008) Molecular characterization, tissue-specific expression, and regulation of melanocortin 2 receptor in rainbow trout. Endocrinology 149:4577–4588

    Article  Google Scholar 

  46. Aluru N, Vijayan MM (2009) Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocr 164:142–150

    Article  CAS  PubMed  Google Scholar 

  47. Morcos M, Du X, Pfisterer F, Hutter H, Sayed AA, Thornalley P, Ahmed N, Baynes J, Thorpe S, Kukudov G, Schlotterer A, Bozorgmehr F, ElBaki RA, Stern D, Moehrlen F, Ibrahim Y, Oikonomou D, Hamann A, Becker C, Zeier M, Schwenger V, Miftari N, Humpert P, Hammes HP, Buechler M, Bierhaus A, Brownlee M, Nawroth PP (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 7:260–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Special Fund of the Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes (Grant No. 2015JBFR06), The National Science Foundation for Young Scientists of China (Grant No. 31502152), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140121), the Key Technology R&D Program of Jiangsu Province (Grant No. BE2014307), and the Three New Projects of Agricultural Aquaculture Program of Jiangsu Province (Grant No. D2015-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Xu, G., Li, Y. et al. Glyoxalase 1 gene of Coilia nasus: molecular characterization and differential expression during transport stress. Fish Sci 82, 719–728 (2016). https://doi.org/10.1007/s12562-016-1003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-1003-y

Keywords

Navigation