Skip to main content
Log in

Comparison of planktonic microbial abundance and dissolved oxygen consumption between the aquaculture ponds of mudskippers and shrimps in the Mekong Delta, southern Vietnam

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Aquaculture of the mudskipper Pseudapocryptes elongatus has expanded rapidly over the past 10 years in the provinces of the Mekong Delta of southern Vietnam. The fish’s capacity for aerial breathing enables its farming in earthen ponds with no aeration or little water exchange. We compared the composition and abundance of algal and bacterial cells, the rates of oxygen consumption by microorganisms, and daily fluctuations in dissolved oxygen (DO) concentration in fish aquaculture ponds, and compared these to data obtained from shrimp aquaculture ponds in the same locality. We found consistently higher numbers (up to 1.8 × 107 cells/ml) of algae, comprising mostly “Chlorella sp.”, and of bacteria (over 108 cells/ml) in fish ponds than in shrimp ponds. The rate of oxygen consumption in the water of the fish ponds was able to deplete DO within a few hours at night, which was corroborated by a series of 24-h DO measurement data recorded in the fish ponds. The present study is the first to clearly demonstrate the extremely high abundance of microorganisms and the resulting prevalence of nighttime anoxia in the water of P. elongatus aquaculture ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO (2014) The state of world fisheries and aquaculture. FAO, Rome. E-ISBN 978-92-5-108276-8 (PDF)

  2. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Philos Trans R Soc B 365:2897–2912

    Article  Google Scholar 

  3. Minh TH, Gallardo WG, Phuong NT (2010) Fishery and aquaculture of juvenile mudskipper Pseudapocryptes elongatus (Cuvier, 1816) in the coastal zone of Mekong Delta, Vietnam. Asian Fish Sci 23:224–239

    Google Scholar 

  4. Bucholtz RH, Meilvang AS, Cedhagen T, Christensen JT, Macintosh DJ (2009) Biological observations on the mudskipper Pseudapocryptes elongatus in the Mekong Delta, Vietnam. J World Aquac Soc 40:711–723

    Article  Google Scholar 

  5. Hora SL (1935) Physiology, bionomics and evolution of the air-breathing fishes of India. Trans Natl Inst Sci India 1:1–16

    Google Scholar 

  6. Joffre OM, Bosma RH (2009) Typology of shrimp farming in Bac Lieu Province, Mekong Delta, using multivariate statistics. Agric Ecosyst Environ 132:153–159

    Article  Google Scholar 

  7. Garschagen M, Diez JR, Nhan DK, Kraas F (2012) Socio-economic development in the Mekong Delta: between the prospects for progress and the realms of reality. In: Renaud FG, Kuenzer C (eds) The Mekong Delta system. Springer, Netherlands, pp 83–132

    Chapter  Google Scholar 

  8. LeGresley M, McDermott G (2010) Counting chamber methods for quantitative phytoplankton analysis—haemocytometer, Palmer–Maloney cell and Sedgewick–Rafter cell. In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO (IOC manuals and guides, no. 55), Paris, pp 25–30

    Google Scholar 

  9. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  10. Clarke KR, Warwick RM (2001) An approach to statistical analysis and interpretation. Change in marine communities, 2nd edn. Plymouth Marine Laboratory, UK

    Google Scholar 

  11. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  12. Shannon CE, Weaver W (2015) The mathematical theory of communication. University of Illinois Press, US

    Google Scholar 

  13. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  14. Sakami T, Fujioka Y, Shimoda T (2008) Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand. Fish Sci 74:889–898

    Article  CAS  Google Scholar 

  15. Lucas R, Courties C, Herbland A, Goulletquer P, Marteau AL, Lemonnier H (2010) Eutrophication in a tropical pond: understanding the bacterioplankton and phytoplankton dynamics during a vibriosis outbreak using flow cytometric analyses. Aquaculture 310:112–121

    Article  Google Scholar 

  16. Tucker CS, Hargreaves JA (2004) Pond water quality. In: Tucker CS, Hargreaves JA (eds) Biology and culture of channel catfish, developments in aquaculture and fisheries science, vol 34. Elsevier, Amsterdam, pp 215–278

    Chapter  Google Scholar 

  17. Arias CR, Abernathy JW, Liu Z (2006) Combined use of 16S ribosomal DNA and automated ribosomal intergenic spacer analysis to study the bacterial community in catfish ponds. Lett Appl Microbiol 43:287–292

    Article  CAS  PubMed  Google Scholar 

  18. Alongi DM, Dixon P, Johnston DJ, Tien DV, Xuan TT (1999) Pelagic processes in extensive shrimp ponds of the Mekong Delta, Vietnam. Aquaculture 175:121–141

    Article  Google Scholar 

  19. Casé M, Leça EE, Leitão SN, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352

    Article  PubMed  Google Scholar 

  20. Cardozo AP, Britto VO, Odebrecht C (2011) Temporal variability of plankton and nutrients in shrimp culture ponds vs. adjacent estuarine water. Panam J Aquat Sci 6:28–43

    Google Scholar 

  21. FAO (2003) Food energy—methods of analysis and conversion factors. FAO Food and Nutrition Paper 77, FAO, Rome

  22. Boyd CE (2003) Bottom soil and water quality management in shrimp ponds. J Appl Aquac 13:11–33

    Article  Google Scholar 

  23. Jackson C, Preston N, Thompson PJ, Burford M (2003) Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture 218:397–411

    Article  CAS  Google Scholar 

  24. Testa JM, Kemp WM (2012) Hypoxia-induced shifts in nitrogen and phosphorus cycling in Chesapeake Bay. Limnol Oceanogr 57:835–850

    Article  CAS  Google Scholar 

  25. Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol 47:163–176

    Article  Google Scholar 

  26. Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476

    Article  CAS  PubMed  Google Scholar 

  27. Burford M (1997) Phytoplankton dynamics in shrimp ponds. Aquac Res 28:351–360

    Article  Google Scholar 

  28. Alonso-Rodrıguez R, Páez-Osuna F (2003) Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219:317–336

    Article  Google Scholar 

  29. Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC (2010) Chlorella minutissima—a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161:523–536

    Article  CAS  PubMed  Google Scholar 

  30. Tho N, Merckx R, Ut VN (2012) Biological characteristics of the improved extensive shrimp system in the Mekong Delta of Vietnam. Aquac Res 43:526–537

    Article  CAS  Google Scholar 

  31. Islam MS, Sarker MJ, Yamamoto T, Wahab MA, Tanaka M (2004) Water and sediment quality, partial mass budget and effluent N loading in coastal brackish water shrimp farms in Bangladesh. Mar Pollut Bull 48:471–485

    Article  CAS  Google Scholar 

  32. Songsangjinda P, Yamamoto T, Fukami K, Kaewtawee T (2006) Importance of controlling community structure of living organisms in intensive shrimp culture ponds. Coast Mar Sci 30:91–99

    Google Scholar 

  33. Shilo M (1980) Strategies of adaptation to extreme conditions in aquatic microorganisms. Naturwissenschaften 67:384–389

    Article  CAS  Google Scholar 

  34. Smith DW, Piedrahita RH (1988) The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture 68:249–265

    Article  Google Scholar 

  35. Goldman JC, Graham SJ (1981) Inorganic carbon limitation and chemical composition of two freshwater green microalgae. Appl Environ Microbiol 41:60–70

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Avnimelech Y, Ritvo G (2003) Shrimp and fish pond soils: processes and management. Aquaculture 220:549–567

    Article  Google Scholar 

  37. Kramer DL (1987) Dissolved oxygen and fish behavior. Environ Biol Fishes 18:81–92

    Article  Google Scholar 

  38. Lefevre S, Wang T, Jensen A, Cong NV, Huong DT, Phuong NT, Bayley M (2014) Air-breathing fishes in aquaculture. What can we learn from physiology? J Fish Biol 84:705–731

    Article  CAS  PubMed  Google Scholar 

  39. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  40. Kautsky N, Rönnbäck P, Tedengren M, Troell M (2000) Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 191:145–161

    Article  Google Scholar 

  41. Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P (1998) Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol 8:621–629

    Article  Google Scholar 

  42. Jiang LX, Pan LQ (2005) Effect of dissolved oxygen on immune parameters of the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18:185–188

    Article  CAS  PubMed  Google Scholar 

  43. Phuong NT, Oanh DTH (2010) Striped catfish aquaculture in Vietnam: a decade of unprecedented development. In: Silva SSD, Davy FB (eds) Success stories in Asian aquaculture. Springer, Netherlands, pp 131–147

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was supported in part by JSPS KAKENHI Grant Numbers JP23405033, JP15H05252, JP25304029 and JST Core-to-Core Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Wada.

Additional information

Toru Takita: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, M., Mori, F., Yokouchi, K. et al. Comparison of planktonic microbial abundance and dissolved oxygen consumption between the aquaculture ponds of mudskippers and shrimps in the Mekong Delta, southern Vietnam. Fish Sci 82, 787–797 (2016). https://doi.org/10.1007/s12562-016-1000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-1000-1

Keywords

Navigation