Skip to main content

Advertisement

Log in

Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn Exopalaemon carinicauda

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Rel/NF-κB transcription factors play critical roles in induction and regulation of innate immune response in organisms. In this study, the full length of a Relish homolog cDNA from Exopalaemon carinicauda named EcRelish was 2141 bp encoding a 660 amino-acid polypeptide. EcRelish cDNA contained a conserved Rel homology domain and two nucleus localization signals. Sequence analysis indicated that the deduced amino acid sequence of the EcRelish showed high similarities to that of other crustaceans. Real time RT-PCR analysis showed that EcRelish mRNA expressed with different levels in tested tissues, and the highest expression was observed in the hemocytes. With longer infection time, the cumulative mortality rates increased gradually followed by the proliferation of Vibrio anguillarum and WSSV. The expression profiles of EcRelish gene were analyzed after V. a nguillarum, white spot syndrome virus (WSSV) challenge, and ammonia-N stress. The results showed that the expression levels of EcRelish mRNA in the hemocytes were up-regulated at 1–24 h after V. a nguillarum challenge. Meanwhile, the expression levels of EcRelish mRNA were up-regulated at 3 h after WSSV challenge. The expression of EcRelish in hemocytes was down-regulated significantly under ammonia-N stress during the experimental time. The results indicated that EcRelish might be involved in immune defense against pathogens and ammonia-N stress in E. c arinicauda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu RY (1957) Palaemon and Macrobrachium. Bull Biol 6:14–23

    Google Scholar 

  2. Xu WJ, Xie JJ, Shi H (2010) Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture 300:25–31

    Article  Google Scholar 

  3. Xia DQ (1999) Biological characteristics and aquaculture technique of Exopalaemon carinicauda. China Fish 3:42–43 (in Chinese)

    Google Scholar 

  4. Lightner DV, Revdman RM (1998) Shrimp diseases and current diagnostic methods. Aquaculture 164:201–220

    Article  Google Scholar 

  5. Li GY (1995) Review of disease and immune mechanism in Penaeus chinensis. Marine Sciences 4:1–3 (in Chinese)

    CAS  Google Scholar 

  6. Le Moullac G, Taravao T, Française P (2000) Environmental factors affect immune response and resistance in Crustaceans. The Advocate 18−19

  7. Aguirre-Guzman G, Sanchez-Martinez JG, Campa-Cordova AI (2009) Penaeid shrimp immune system. Thai J Vet Med 39:205–215

    Google Scholar 

  8. Amparyup P, Kondo H, Hirono I, Aoki T, Tassanakajon A (2008) Molecular cloning, genomic organization and recombinant expression of a crustin-like antimi-crobial peptide from black tiger shrimp Penaeus monodon. Mol Immunol 45:1085–1093

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126

    Article  CAS  PubMed  Google Scholar 

  10. Kush RS, Leulier F, Lemaitre B (2001) Drosophila immunity: two paths to NF-kB. Trends Immunol 22:260–264

    Article  Google Scholar 

  11. De Gregorio E, Spellman PT, Tzou P (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    Article  PubMed Central  PubMed  Google Scholar 

  12. Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C et al (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev cell 1:503–514

    Article  CAS  PubMed  Google Scholar 

  13. Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, Georgel P et al (1995) A recessive mutation, immune deficiency (IMD), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 92:9465–9469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Naitza S, Rossé C, Kappler C, Georgel P, Belvin M, Gubb D et al (2002) The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17:575–581

    Article  CAS  PubMed  Google Scholar 

  15. Rutschmann S, Kilinc A, Ferrandon D (2002) Cutting edge: the Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. Immunology 168:1542–1546

    Article  CAS  Google Scholar 

  16. Hedengren M, Asling B, Dushay MS (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837

    Article  CAS  PubMed  Google Scholar 

  17. Wang DN, Liu JW, Yang GZ, Zhang WJ, Wu XF (2002) Cloning of anti-LPS factor cDNA from Tachypleus tridentatus, expression in Bombyx mori larvae and its biological activity in vitro. Mol Biotechnol 21:1–7

    Article  PubMed  Google Scholar 

  18. Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila Toll-Dorsal pathway. Annu Rev Cell Dev Biol 12:393–416

    Article  CAS  PubMed  Google Scholar 

  19. Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. PNAS 94:14614–14619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569–580

    Article  CAS  PubMed  Google Scholar 

  21. Kang CJ, Wang JX, Zhao XF, Yang XM, Shao HL, Xiang JH (2004) Molecular cloning and expression analysis of the ch-penaedin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 16:513–525

    Article  CAS  PubMed  Google Scholar 

  22. Cuthbertson B, Bullesbach E, Bachere E, Fievet J, Gross P (2004) A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. Biochem J 381:79–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Visetnan S, Supungul P, Hirono I, Tassanakajon A, Rimphanitchayakit V (2015) Activation of Pm Relish from Penaeus monodon by yellow head virus. Fish Shellfish Immunol 42:335–344

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann JA, Reichhart JM, Hetru C (1995) Innate immunity in insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  25. Shin SW, Kokoza V, Ahmed A, Raikhel AS (2002) Characterization of three alternatively spliced isoforms of the Rel/NF-κB transcription factor Relish from the mosquito Aedes aegypti. PNAS 99:9978–9983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Meister S, Kanzok SM, Zheng XL, Luna C, Li TR, Hoa NT (2005) Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci USA 102:11420–11425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liu WJ, Yang LS, Li XL (2013) Cloning and mRNA expression analysis of Relish gene in Penaeus monodon following immune stimulation. J Fish Sci China 20:50–60 (in Chinese with English abstract)

    CAS  Google Scholar 

  28. Li FH, Yan H, Wang DD, Priya TAJ, Li SH, Wang B et al (2009) Identification of a novel relish homolog in Chinese shrimp Fenneropenaeus chinensis and its function in regulating the transcription of antimicrobial peptides. Dev Comp Immunol 33:1093–1101

    Article  CAS  PubMed  Google Scholar 

  29. Huang XD, Yin ZX, Liao JX (2009) Identification and functional study of a shrimp Relish homologue. Fish Shellfish Immunol 27:230–238

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Wang L, Zhang H (2010) Molecular cloning and expression of a Relish gene in Chinese mitten crab Eriocheir sinensis. Int J Immunogenet 37:499–508

    Article  PubMed  Google Scholar 

  31. Frias-Espericueta MG, Harfush-Melendez M, Páez-Osuna F (2000) Effects of ammonia on mortality and feeding of postlarvae shrimp Litopenaeus vannamei. Bull Environ Contam Toxicol 65:98–103

    Article  CAS  PubMed  Google Scholar 

  32. Liu CH, Chen JC (2004) Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol 16(3):321–334

    Article  CAS  PubMed  Google Scholar 

  33. Jiang GJ, Yu RC, Zhou MJ (2004) Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndrome virus. Aquaculture 241:61–75

    Article  CAS  Google Scholar 

  34. Cheng WT, Chen JC (2002) The virulence of Enterococcus to freshwater prawn Macrobrachium rosenbergii and its immune resistance under ammonia stress. Fish Shellfish Immunol 12:97–109

    Article  PubMed  Google Scholar 

  35. D’Acquisto F, Luvone T, Rombola L (1997) Involvement of NF-KB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Lett 418:175–178

    Article  PubMed  Google Scholar 

  36. Choudhury MG, Nirmalendu S (2012) Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis). Aquat Toxicol 116–117:43–53

    Article  PubMed  Google Scholar 

  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1609

    Article  CAS  PubMed  Google Scholar 

  38. Yan DC, Dong SL, Huang J, Zhang JS (2007) White spot syndrome virus (WSSV) transmission from rotifer inoculum to crayfish. J Invertebr Pathol 94:144–148

    Article  PubMed  Google Scholar 

  39. Liang JP, Li J, Li JT (2012) Acute toxicity of ridgetail white prawn Exopalaemon carinicauda. Fish Sci 31:526–529 (in Chinese with English abstract)

    CAS  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  41. González-Rodríguez G, Colubi A, Gil MÁ (2012) Fuzzy data treated as functional data: a one-way ANOVA test approach. Comput Stat Data Anal 56:943–955

    Article  Google Scholar 

  42. Duan YF, Liu P, Li JT (2013) Expression profiles of selenium dependent glutathione peroxidase and glutathione S-transferase from Exopalaemon carinicauda in response to Vibrio anguillarum and WSSV challenge. Fish Shellfish Immunol 35:661–670

    Article  CAS  PubMed  Google Scholar 

  43. Zhang QL, Li FH, Zhang XJ, Dong B, Zhang JQ, Xie YS et al (2008) cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 24:584–591

    Article  CAS  PubMed  Google Scholar 

  44. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    Article  CAS  PubMed  Google Scholar 

  45. Zhao JM, Song LS, Li CH, Ni DJ, Wu LT, Zhu L et al (2007) Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol Immunol 44:360–368

    Article  CAS  PubMed  Google Scholar 

  46. Wang DD (2012) Functional studies on the regulation of immunity in Chinese shrimp, Fenneropenaeus chinensis by the nuclear transcription factor, NF-κB family genes. PhD dissertation, Chinese Academy of Sciences, Beijing

  47. Yan H (2009) Cloning and Expression of Nuclear Transcription Factors Rel/NF-κB family genes in Chinese shrimp Fenneropenaeus chinensis. Master’ Degree dissertation, Chinese Academy of Sciences, Beijing

  48. Bachere E (2000) Shrimp immunity and disease control. Aquaculture 191:3–11

    Article  Google Scholar 

  49. Holmblad T, Söderhäll K (1999) Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172:111–123

    Article  CAS  Google Scholar 

  50. Wang B, Li FH, Luan W, Xie YS, Zhang CS, Luo Z et al (2008) Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Mar Biotechnol 10:664–675

    Article  CAS  PubMed  Google Scholar 

  51. Mekata T, Kono T, Yoshida T, SakaiM Itami T (2008) Identification of cDNA encoding Toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 24:122–133

    Article  CAS  PubMed  Google Scholar 

  52. Uvell H, Engström Y (2007) A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet 23:342–349

    Article  CAS  PubMed  Google Scholar 

  53. Chi YH (2012) Cloning and preliminary study on the function relationships of genes related to the Rac1/PI3K/Akt pathway in Chinese shrimp. Master’ Degree dissertation, Chinese Academy of Sciences, Beijing

  54. Guo ZX, Feng J, Wang JY (2006) Clearance of Vibrio anguillarum by hemocytes in giant black tiger shrimp Penaeus monodonin vivo. J Fish Sci China. 13:28−32 (in Chinese with English abstract)

  55. Shen H, Wan XH, Wang LB (2013) Study on experimental infection of Exopalaemon carinicauda Holehuis with white spot syndrome virus. Marine Sciences 37:55–60 (in Chinese with English abstract)

    Google Scholar 

  56. Lightner DV, Hasson KW, White BL, Redman RM (1998) Experimental infections of western hemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow head virus. J Aquat Anim Health 10:271–281

    Article  Google Scholar 

  57. Wang DD, Li SH, Li FH (2013) Screening of genes regulated by relish in Chinese shrimp Fenneropenaeus chinensis. Dev Comp Immunol 41:209–216

    Article  CAS  PubMed  Google Scholar 

  58. Liu YC, Li FH, Dong B, Wang B, Luan W, Zhang XJ, Xiang JH (2007) Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol Immunol 44:598–607

    Article  CAS  PubMed  Google Scholar 

  59. Chen YY, Sim SS, Chiew SL (2012) Dietary administration of a Gracilaria tenuistipitata extract produces protective immunity of white shrimp Litopenaeus vannamei in response to ammonia stress. Aquaculture 370:26–31

    Article  Google Scholar 

  60. Colt JE, Armstrong DA (1981) Nitrogen toxicity to crustaceans, fish and molluscs. In: Allenand LJ (ed) “Proceedings of the bio-engineering symposium for fish culture”, Kinney EC Section of the American Fisheries Society FCS publ.1, Bethesda, pp 34−47

  61. Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Article  Google Scholar 

  62. Hong M, Chen L, Sun X (2007) Metabolic and immune responses in Chinese mitten-handed crab (Eriocheir sinensis) juveniles exposed to elevated ambient ammonia. Comp Biochem Phys C 145:363–369

    Google Scholar 

  63. Stöven S, Ando I, Kadalayil L, Engström Y, Hultmark D (2000) Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1:347–352

    Article  PubMed Central  PubMed  Google Scholar 

  64. Kim M, Lee JH, Lee SY, Kim E, Chung J (2006) Caspar, a suppressor of antibacterial immunity in Drosophila. Proc Natl Acad Sci USA 103:16358–16363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods. Dev Comp Immunol 7:229–239

    Article  PubMed  Google Scholar 

  66. Li X, Meng X, Kong J, Luo K, Luan S, Cao B, Liu N, Pang J, Shi X (2013) Molecular cloning an characterization of a cathepsin B gene from the Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 35:1604–1612

    Article  CAS  PubMed  Google Scholar 

  67. Moreno C, Romero J, Espejo RT (2002) Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 148:1233–1239

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the laboratory members for experimental material preparation and technical assistance. This study was supported by the earmarked fund for National “863” Project of China (No. 2012AA10A409), Modern Agro-industry Technology Research System (No. CARS-47), and the Special Fund for Agro-scientific Research in the Public Interest (No. 201103034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Liang, J., Li, J. et al. Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn Exopalaemon carinicauda . Fish Sci 81, 699–711 (2015). https://doi.org/10.1007/s12562-015-0898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0898-z

Keywords

Navigation