Skip to main content
Log in

Experimental evaluation of calcein and alizarin red S for immersion marking grass carp Ctenopharyngodon idellus

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Calcein (CAL) and alizarin red S (ARS) at concentrations of 50–200 and 150–300 mg/l, respectively, were used for immersion marking juvenile grass carp Ctenopharyngodon idellus. With the exception of non-lateral line scales from the 150 mg/l ARS treatment and lateral line scales from the 150, 200 mg/l ARS treatments, immersion for 24 h produced detectable marks in sagittae, lateral line and non-lateral line scales, and fin rays (dorsal, pectoral, ventral, anal, and caudal) at 100 days post-marking. Detectable fluorescent marks in sagittae were readily observed at concentrations of 150–200 mg/l CAL or 200–300 mg/l ARS. Marks were poorly visible in all non-lateral line and lateral line scales from ARS-treated groups. Fluorescent marks were readily detected in non-lateral line and lateral line scales at 150–200 mg/l CAL, and in fin rays at 100–200 mg/l CAL or 150–300 mg/l ARS. In particular, optimal marks were observed at comparatively high concentrations investigated in sagittae (300 mg/l ARS) and fin rays (100–200 mg/l CAL or 250–300 mg/l ARS). There was no significant difference on the survival or growth of marked fish compared to controls throughout the experiment (P > 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhong Y, Power G (1997) Fisheries in China: progress, problems, and prospects. Can J Fish Aquat Sci 54(1):224–238

    Article  Google Scholar 

  2. Jagdish M, Rana SVS, Agarwal VP (1995) Efficacy of grass carp (Ctenopharyngodon idella) in weed control and its growth in Karna Lake (Haryana). J Inland Fish Soc India 27:49–55

    Google Scholar 

  3. Leslie AJJ, Van Dyke JM, Hestand RS III, Thompson BZ (1987) Management of aquatic plants in multi-use lakes with grass carp (Ctenopharyngodon idella). Lake Reserv Manag 3:266–276

    Article  Google Scholar 

  4. Irons KS, Sass GG, McClelland MA, Stafford JD (2007) Reduced condition factor of two nativefish species coincident with invasion of non-native Asian carps in the Illinois River, USA. Is this evidence for competition and reduced fitness? J Fish Biol 71(sd):258–273

  5. Li YK, Chen Y, Song B, Olson D, Yu N, Chen LQ (2009) Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing. Fish Res 95(2):309–324

    Google Scholar 

  6. Mchich R, Charouki N, Auger P, Raïssi N, Ettahiri O (2006) Optimal spatial distribution of the fishing effort in a multi fishing zone model. Ecol Model 197(3–4):274–280

    Article  Google Scholar 

  7. Zhang G, Cao W, Chen Y (1997) Effects of fish stocking on lake ecosystems in China. Acta Hydrobiol Sin 21(3):271–280

    Google Scholar 

  8. Jia PQ, Zhang WB, Liu QG (2013) Lake fisheries in China: challenges and opportunities. Fish Res 140:66–72

    Article  Google Scholar 

  9. MAFBC M.o.A.a.F.B.o.C. (2013) 2012 China Fishery Statistical Yearbook. China Agriculture Press, Peking (in Chinese)

  10. Zhang M, Xie CX, Hansson LA, Hu WM, Che JP (2012) Trophic level changes of fishery catches in Lake Chaohu, Anhui Province, China: trends and causes. Fish Res 131–133:15–20

    Article  Google Scholar 

  11. Lü HJ, Zhang XM, Fu M, Xi D, Gao TX (2014) Use of tetracycline hydrochloride and alizarin complexone for immersion marking black rockfish, Sebastes schlegelii. Chin J Oceanol Limnol 32(4):810–820

    Article  Google Scholar 

  12. Barker JM, McKaye KR (2004) Immersion marking of juvenile midas Cichlids with oxytetracycline. N Am J Fish Manag 24(1):262–269

    Article  Google Scholar 

  13. Taylor MD, Fielder DS, Suthers IM (2005) Batch marking of otoliths and fin spines to assess the stock enhancement of Argyrosomus japonicus. J Fish Biol 66(4):1149–1162

    Article  Google Scholar 

  14. Lv HJ, Zhang XM, Zhang PD, Li WT, Miao ZQ (2011) The implement of plastic oval tags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on the northeast coast of Shandong Province, China. Afr J Biotechnol 10(61):13263–13277

    Google Scholar 

  15. Hagen P, Munk K, Van Alen B, White B (1995) Thermal mark technology for inseason fisheries management: a case study. Alaska Fish Res Bull 2(2):143–155

    Google Scholar 

  16. Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43(1):205–219

    Article  Google Scholar 

  17. Tsukamoto K (1985) Mass-marking of ayu eggs and larvae by tetracycline-tagging of otoliths. Nippon Suisan Gakkaishi 51(6):903–911

    Article  Google Scholar 

  18. Tsukamoto K (1988) Otlith tagging of ayu embryo with fluorescent substances. Nippon Suisan Gakkaishi 54(8):1289–1295

    Article  Google Scholar 

  19. Liu Q, Zhang XM, Zhang PD, Nwafili SA (2009) The use of alizarin red S and alizarin complexone for immersion marking Japanese flounder Paralichthys olivaceus (T.). Fish Res 98(1):67–74

    Article  Google Scholar 

  20. Gelsleichter J, Cortés E, Manire CA, Hueter RE, Musick JA (1997) Use of calcein as a fluorescent marker for elasmobranch vertebral cartilage. Trans Am Fish Soc 126(5):862–865

    Article  Google Scholar 

  21. Lagardère F, Thibaudeau K, Anras MLB (2000) Feasibility of otolith markings in large juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions. ICES J Mar Sci 57(4):1175–1181

    Article  Google Scholar 

  22. Monaghan JP Jr (1993) Comparison of calcein and tetracycline as chemical markers in summer flounder. Trans Am Fish Soc 122(2):298–301

    Article  Google Scholar 

  23. Honeyfield DC, Ostrowski CS, Fletcher JW, Mohler JW (2006) Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales. N Am J Fish Manag 26(2):431–437

    Article  Google Scholar 

  24. Crook DA, O’Mahony D, Gillanders BM, Munro AR, Sanger AC (2007) Production of external fluorescent marks on Golden Perch fingerlings through osmotic induction marking with Alizarin Red S. N Am J Fish Manag 27:670–675

    Article  Google Scholar 

  25. Crook DA, O’Mahony D, Sanger AC, Munro AR, Gillanders BM (2009) Development and evaluation of methods for osmotic induction marking of Golden Perch Macquaria ambigua with Calcein and Alizarin Red S. N Am J Fish Manag 29:279–287

    Article  Google Scholar 

  26. Lü HJ, Zhang XM, Xi D, Gao TX (2014) Use of calcein and alizarin red S for immersion marking of black rockfish Sebastes schlegelii juveniles. Chin J Oceanol Limnol 32(1):88–98

    Article  Google Scholar 

  27. Baer J, Rösch R (2008) Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin: method and evaluation of stocking. J Appl Ichthyol 24(1):44–49

    Article  Google Scholar 

  28. Brown ML, Powell JL, Lucchesi DO (2002) In-transit oxytetracycline marking, nonlethal mark detection, and tissue residue depletion in yellow perch. N Am J Fish Manag 22(1):236–242

    Article  Google Scholar 

  29. Oliveira K (1996) Field validation of annular growth rings in the American eel, Anguilla rostrata, using tetracycline-marked otoliths. Fish Bull 94(1):186–189

    Google Scholar 

  30. Leips J, Baril CT, Rodd FH, Reznick DN, Bashey F, Visser GJ, Travis J (2001) The suitability of calcein to mark poeciliid fish and a new method of detection. Trans Am Fish Soc 130(3):501–507

    Article  Google Scholar 

  31. Eckmann R (2003) Alizarin marking of whitefish, Coregonus lavaretus otoliths during egg incubation. Fish Manag Ecol 10(4):233–239

    Article  Google Scholar 

  32. Walt BVD, Faragher RA (2003) Otolith marking of rainbow trout fry by immersion in low concentrations of alizarin complexone. N Am J Fish Manag 23(1):141–148

    Article  Google Scholar 

  33. Beckman DW, Schulz RG (1996) A simple method for marking fish otoliths with alizarin compounds. Trans Am Fish Soc 125(1):146–149

    Article  CAS  Google Scholar 

  34. Tsukamoto K, Kuwada H, Hirokawa J, Oya M, Sekiya S, Fujimoto H, Imaizumi K (1989) Size-dependent mortality of red sea bream, Pagrus major, juveniles released with fluorescent otolith-tags in News Bay, Japan. J Fish Biol 35(Supplement A):59–69

    Google Scholar 

  35. Yamashita Y, Nagahora S, Yamada H, Kitagawa D (1994) Effects of release size on survival and growth of Japanese flounder Paralichtys olivaceus in coastal waters off Iwate Prefecture, northeastern Japan. Mar Ecol Prog Ser 105:269–276

    Article  Google Scholar 

  36. Ibáñez AL, Rodríguez-Canto A, Cortés-Martínez J, García-Calderón JL (2013) Evaluation of marking efficiency of different alizarin red S concentrations on body fish structures in Oreochromis niloticus (Perciformes: Cichlidae) juveniles. Int J Trop Biol Conserv 61(1):193–201

    Google Scholar 

  37. Bashey F (2004) A comparison of the suitability of alizarin red S and calcein for inducing a nonlethally detectable mark in juvenile guppies. Trans Am Fish Soc 133(6):1516–1523

    Article  Google Scholar 

  38. Skov C, Grønkjær P, Nielsen C (2001) Marking pike fry otoliths with alizarin complexone and strontium: an evaluation of methods. J Fish Biol 59(3):745–750

    Article  Google Scholar 

  39. Mohler JW (2003) Producing fluorescent marks on Atlantic salmon fin rays and scales with calcein via osmotic induction. N Am J Fish Manag 23(4):1108–1113

    Article  Google Scholar 

  40. Purcell SW, Blockmans BF, Nash WJ (2006) Efficacy of chemical markers and physical tags for large-scale release of an exploited holothurians. J Exp Mar Biol Ecol 334(2):283–293

    Article  CAS  Google Scholar 

  41. Simon J, Dörner H (2005) Marking the European eel with oxytetracycline, alizarin red and coded wire tags: an evaluation of methods. J Fish Biol 67(5):1486–1491

    Article  Google Scholar 

  42. Frenkel V, Kindschi G, Zohar Y (2002) Noninvasive, mass marking of fish by immersion in calcein: evaluation of fish size and ultrasound exposure on mark endurance. Aquaculture 214(1–4):169–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ther National Natural Science Foundation of China (No. 31400396) and the Fundamental Research Funds for the Central Universities (XDJK2014C019 and SWU113056). We wish to express our thanks to Prof. Weizhi Yao, Shengqi Su, and Zhengli Wu for their suggestions on the manuscript and participation in many aspects of this study. We also thank the three anonymous reviewers for their valuable and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, H., Chen, H., Fu, M. et al. Experimental evaluation of calcein and alizarin red S for immersion marking grass carp Ctenopharyngodon idellus . Fish Sci 81, 653–662 (2015). https://doi.org/10.1007/s12562-015-0884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0884-5

Keywords

Navigation