Skip to main content
Log in

Transition of the retinal area centralis in bluegill Lepomis macrochirus as an implication of changes in feeding ecology with age

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In teleosts, the area of peak ganglion cell density in the retina (area centralis, AC) is thought to reflect the primary visual axis for feeding. The bluegill Lepomis macrochirus are known to undergo ontogenetic shifts in diet preference, but because their diet is affected by population density, interspecific competition, and seasonal changes in prey availability, they are considered generalist predators. We investigated whether the diet shifts of the bluegill were associated with a change in the location of the AC (total length of fish specimens, range 44–243 mm). The AC was located temporally in the retina of smaller fish (40–100 mm), and the area of increased density included the ventral and central regions of the retina. Conversely, the AC was located in the dorso-temporal region of the retina in larger (100–200 mm) fish. Lastly, in the largest bluegill (> 200 mm), the AC was located in the temporal region of the retina. In all cases, the orientation of the visual axis was consistent with the known diet preferences of the different size classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paszkowski CA (1986) Foraging site use and interspecific competition between bluegills and golden shiners. Env Biol Fish 17(3):227–233

    Article  Google Scholar 

  2. Ehlinger TJ, Wilson DS (1988) Complex foraging polymorphism in bluegill sunfish. Proc Natl Acad Sci USA 85:1878–1882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Azuma M (1992) Ecological release in feeding behaviour: the case of bluegills in Japan. Hydrobiologia 243(244):269–276

    Article  Google Scholar 

  4. Hall DJ, Cooper WE, Werner EE (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15:839–928

    Article  Google Scholar 

  5. Engel S (1988) The role and interaction of submersed macrophytes in a shallow Wisconsin lake. J Freshw Ecol 4:329–341

    Article  Google Scholar 

  6. Olson NW, Paukert CP, Willis DW (2003) Prey selection and diets of bluegill Lepomis macrochirus with differing population characteristics in two Nebraska natural lakes. Fish Manag Ecol 10:31–40

    Article  Google Scholar 

  7. Sakano H, Yodo T (2004) Zooplankton prey selectivity of bluegill in small pond. Nippon Suisan Gakkaishi 70(3):313–317

    Article  Google Scholar 

  8. Chipps SR, Dunbar JA, Wahl DH (2004) Phenotypic variation and vulnerability to predation in juvenile bluegill sunfish (Lepomis macrochirus). Oecologia 138:32–38

    Article  PubMed  Google Scholar 

  9. Uchii K, Matsui K, Yonekura R, Tani K, Kenzaka T, Nasu T, Kawabata Z (2006) Genetic and physiological characterization of the intestinal bacterial microbiota of bluegill (Lepomis macrochirus) with three different feeding habits. Microb Ecol 51:277–283

    Article  CAS  PubMed  Google Scholar 

  10. Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282

    Article  CAS  PubMed  Google Scholar 

  11. Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behav Evol 31:283–295

    Article  CAS  PubMed  Google Scholar 

  12. Collin SP, Pettigrew JD (1989) Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav Evol 34:184–192

    Article  CAS  PubMed  Google Scholar 

  13. Shand J, Chin SM, Harman AM, Moore S, Collin SP (2000) Variability in the location of the retinal ganglion cell area centralis is correlated with ontogenetic changes in feeding behavior in the black bream, Acanthopagrus butcheri (Sparidae, Teleostei). Brain Behav Evol 55:176–190

    Article  CAS  PubMed  Google Scholar 

  14. Kino M, Miyazaki T, Iwami T, Kohbara J (2009) Retinal topography of ganglion cells in immature ocean sunfish, Mola mola. Env Biol Fish 85:33–38

    Article  Google Scholar 

  15. Miyazaki T, Iwami T, Meyer-Rochow VB (2011) The position of the retinal area centralis changes with age in Champsocephalus gunnari (Channichthyidae), a predatory fish from coastal Antarctic waters. Polar Biol 34:1117–1123

    Article  Google Scholar 

  16. Miyazaki T (2014) Retinal ganglion cell topography in juvenile Pacific bluefin tuna Thunnus orientalis (Temminck and Schlegel). Fish Phys Biochem 40:23–32

    Article  CAS  Google Scholar 

  17. Miyazaki T, Kobayashi M (2015) Morphological characteristics of eyes and retinas of two sardines (Sardinops melanostictus and Etrumeus sadina, Clupeidae) and an anchovy (Engraulis japonicus, Engraulidae). J Morphology 276:415–424

    Article  Google Scholar 

  18. Matthiessen L (1886) Ueber den physikalisch-optischen Bau des Auges der Cetaceen und der Fische. Pfluegers Arch 38:521–528

    Article  Google Scholar 

  19. Tuge H, Uchihashi K, Shimamura H (1968) An atlas of the brains of fishes of Japan. Tsukiji Shokan Publishing, Tokyo

    Google Scholar 

  20. Døving KB (1986) Functional properties of the fish olfactory system. In: Ottoson D (ed) Progress in sensory physiology, vol 6. Springer, Berlin, pp 39–104

    Google Scholar 

  21. Kasumyan AO (2004) The olfactory system in fish: Structure, function, and role in behavior. J Ichthyol 44:S180–S223

    Google Scholar 

  22. Tamura T (1957) A study of visual perception in fish, especially on resolving power and accommodation. Nippon Suisan Gakkaishi 22:536–557

    Article  Google Scholar 

  23. Northmore DP, Oh DJ, Celenza MA (2007) Acuity and contrast sensitivity of the bluegill sunfish and how they change during optic nerve regeneration. Vis Neurosci 24:319–331

    Article  CAS  PubMed  Google Scholar 

  24. Hairston NG Jr, Li KT, Easter SS Jr (1982) Fish vision and the detection of planktonic prey. Science 218:1240–1242

    Article  PubMed  Google Scholar 

  25. Mass AM (2004) A High-resolution area in the retinal ganglion cell layer of the Steller’s Sea lion (Eumetopias jubatus): a topographic study. Dokl Biol Sci 396:187–190

    Article  CAS  PubMed  Google Scholar 

  26. Yamanouchi T (1956) The visual acuity of the coral fish Microcanthus strigatus (Cuvier and Valencienne). Publ Seto Mar Biol Lab 5:133–156

    Google Scholar 

  27. Ooyama A, Tanaka H, Suzuki T, Takahashi K, Kataoka Y (2001) Distribution and prey selection of bluegill. Rep Shiga Prefect Fish Exp Stn 98–99 (in Japanese)

Download references

Acknowledgments

The authors thank Dr. K. Kawamura, Mie University, for assistance during sampling and Dr. N. Yamamoto, Nagoya University, for helpful advice on brain component observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeko Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, Y., Miyazaki, T. Transition of the retinal area centralis in bluegill Lepomis macrochirus as an implication of changes in feeding ecology with age. Fish Sci 81, 673–678 (2015). https://doi.org/10.1007/s12562-015-0880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0880-9

Keywords

Navigation