Skip to main content
Log in

Molecular characterization of calponin in the catch muscle of the Yesso scallop Mizuhopecten yessoensis

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Full-length cDNA clone encoding calponin from the catch muscle of the Yesso scallop, Mizuhopecten yessoensis, was isolated and sequenced. Scallop calponin consists of 384 amino acid residues and its deduced molecular weight was 42,154. The motif structure is composed of a single calponin homology domain and five tandem calponin domains, which are repeats of a 25 amino acid sequence. Sixty-four percent (64 %) of the amino acids identified in Yesso scallop calponin were similar to that from the anterior byssus retractor muscle (catch muscle) of the mussel Mytilus galloprovincialis. Dot blot and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that Yesso scallop calponin is mainly expressed in the catch muscle and, to a lesser extent, the mantle. Western blot analysis performed using rabbit anti-Yesso scallop calponin antiserum raised the possibility that a calponin isoform with a larger molecular weight is expressed in striated muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Funabara D, Kanoh S, Siegman MJ, Butler TM, Hartshorne DJ, Watabe S (2005) Twitchin as a regulator of catch contraction in molluscan smooth muscle. J Muscle Res Cell Motil 26:455–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Siegman MJ, Funabara D, Kinoshita S, Watabe S, Hartshorne DJ, Butler TM (1998) Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc Natl Acad Sci USA 95:5383–5388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Funabara D, Kinoshita S, Watabe S, Siegman MJ, Butler TM, Hartshorne DJ (2001) Phosphorylation of molluscan twitchin by the cAMP-dependent protein kinase. Biochemistry 40:2087–2095

    Article  CAS  PubMed  Google Scholar 

  4. Yamada A, Yoshio M, Kojima H, Oiwa K (2001) An in vitro assay reveals essential protein components for the “catch” state of invertebrate smooth muscle. Proc Natl Acad Sci USA 98:6635–6640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Funabara D, Hamamoto C, Yamamoto K, Inoue A, Ueda M, Osawa R, Kanoh S, Hartshorne DJ, Suzuki S, Watabe S (2007) Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch. J Exp Biol 210:4399–4410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Funabara D, Nakaya M, Watabe S (2001) Isolation and characterization of a novel 45 kDa calponin-like protein from anterior byssus retractor muscle of the mussel Mytilus galloprovincialis. Fish Sci 67:511–517

    Article  CAS  Google Scholar 

  7. Dobrzhanskaya AV, Vyatchin IG, Lazarev SS, Matusovsky OS, Shelud’ko NS (2013) Molluscan smooth catch muscle contains calponin but not caldesmon. J Muscle Res Cell Motil 34:23–33

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Hiwada K, Kokubu T (1986) Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun 141:20–26

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi K, Nadal-Ginard B (1991) Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem 266:13284–13288

    CAS  PubMed  Google Scholar 

  10. Abe M, Takahashi K, Hiwada K (1990) Effect of calponin on actin-activated myosin ATPase activity. J Biochem 108:835–838

    CAS  PubMed  Google Scholar 

  11. Winder S, Walsh M (1990) Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 265:10148–10155

    CAS  PubMed  Google Scholar 

  12. Shirinsky V, Biryukov K, Hettasch J, Sellers J (1992) Inhibition of the relative movement of actin and myosin by caldesmon and calponin. J Biol Chem 267:15886–15892

    CAS  PubMed  Google Scholar 

  13. Borovikov YuS, Horiuchi KY, Avrova SV, Chacko S (1996) Modulation of actin conformation and inhibition of actin filament velocity by calponin. Biochemistry 35:13849–13857

    Article  CAS  PubMed  Google Scholar 

  14. Mabuchi K, Wang C-LA (1991) Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin. J Muscle Res Cell Motil 12:145–151

    Article  CAS  PubMed  Google Scholar 

  15. Wills FL, McCubbin WD, Kay CM (1993) Characterization of the smooth muscle calponin and calmodulin complex. Biochemistry 32:2321–2328

    Article  CAS  PubMed  Google Scholar 

  16. Makuch R, Birukov K, Shirinsky V, Dabrowska R (1991) Functional interrelationship between calponin and caldesmon. Biochem J 280:33–38

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kołakowski J, Makuch R, Stepkowski D, Dabrowska R (1995) Interaction of calponin with actin and its functional implications. Biochem J 306:199–204

    PubMed Central  PubMed  Google Scholar 

  18. Lu FWM, Freedman MV, Chalovich JM (1995) Characterization of calponin binding to actin. Biochemistry 34:11864–11871

    Article  CAS  PubMed  Google Scholar 

  19. Stafford WF III, Mabuchi K, Takahashi K, Tao T (1995) Physical characterization of calponin. J Biol Chem 270:10576–10579

    Article  CAS  PubMed  Google Scholar 

  20. Castresana J, Saraste M (1995) Does Vav bind to F-actin through a CH domain? FEBS Lett 374:149–151

    Article  CAS  PubMed  Google Scholar 

  21. Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111:1813–1821

    CAS  PubMed  Google Scholar 

  22. Lener T, Burgstaller G, Gimona M (2004) The role of calponin in the gene profile of metastatic cells: inhibition of metastatic cell motility by multiple calponin repeats. FEBS Lett 556:221–226

    Article  CAS  PubMed  Google Scholar 

  23. Haeberle JR (1994) Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J Biol Chem 269:12424–12431

    CAS  PubMed  Google Scholar 

  24. Jaworowski Å, Anderson KI, Arner A, Engström M, Gimona M, Strasser P, Small JV (1995) Calponin reduces shortening velocity in skinned taenia coli smooth muscle fibres. FEBS Lett 365:167–171

    Article  CAS  PubMed  Google Scholar 

  25. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  27. Tang D-C, Kang H-M, Jin J-P, Fraser ED, Walsh MP (1996) Structure-function relations of smooth muscle calponin. J Biol Chem 271:8605–8611

    Article  CAS  PubMed  Google Scholar 

  28. Itoh T, Suzuki A, Watanabe Y, Mino T, Naka M, Tanaka T (1995) A calponin peptide enhances Ca2+ sensitivity of smooth muscle contraction without affecting myosin light chain phosphorylation. J Biol Chem 270:20400–20403

    Article  CAS  PubMed  Google Scholar 

  29. Applegate D, Feng W, Green RS, Taubman MB (1994) Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J Biol Chem 269:10683–10690

    CAS  PubMed  Google Scholar 

  30. Samaha FF, Ip HS, Morrisey EE, Seltzer J, Tang Z, Solway J, Parmacek MS (1996) Developmental pattern of expression and genomic organization of the calponin-h1 gene. J Biol Chem 271:395–403

    Article  CAS  PubMed  Google Scholar 

  31. Maguchi M, Nishida W, Kohara K, Kuwano A, Kondo I, Hiwada K (1995) Molecular cloning and gene mapping of human basic and acidic calponins. Biochem Biophys Res Commun 217:238–244

    Article  CAS  PubMed  Google Scholar 

  32. Funabara D, Watanabe D, Satoh N, Kanoh S (2013) Genome-wide survey of genes encoding muscle proteins in the pearl oyster, Pinctada fucata. Zool Sci 30:817–825

    Article  CAS  PubMed  Google Scholar 

  33. Funabara D, Osawa R, Ueda M, Kanoh S, Hartshorne DJ, Watabe S (2009) Myosin loop 2 is involved in the formation of a trimeric complex of twitchin, actin, and myosin. J Biol Chem 284:18015–18020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Funabara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funabara, D., Watabe, S. & Kanoh, S. Molecular characterization of calponin in the catch muscle of the Yesso scallop Mizuhopecten yessoensis . Fish Sci 81, 155–162 (2015). https://doi.org/10.1007/s12562-014-0825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0825-8

Keywords

Navigation