Skip to main content
Log in

Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

A key component of modern drug development is to identify the patient population(s) that benefit most from the therapy. Subjects with different biomarker/genetic profiles may respond to a therapy differently. At the same time, data of populations with best efficacy may not be available due to lack of randomized data or biomarker assay when designing the phase III confirmatory trials. In this manuscript, we propose an adaptive design that performs biomarker-informed population selection at the interim analysis, so as to refine the population for primary hypothesis at the final analysis. Unlike most of the previous research work, where the same endpoint is used for interim population selection and final analysis, we propose to use a sensitive intermediate endpoint (whenever available) for population selection. Treatment effect of the intermediate endpoint is treated as a nuisance parameter to ensure type I error control. The use of a sensitive intermediate endpoint for biomarker population selection further improves study power. Simulations were conducted to evaluate the control of overall type I error, probabilities of population selection, and power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schilsky RL (2010) Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9(5):363–366

    Article  Google Scholar 

  2. Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5(9):645–656

    Article  Google Scholar 

  3. Kummar RK et al (2007) Compressing drug development timelines in oncology using phase ‘0’ trials. Nat Rev Cancer 7:131–139

    Article  Google Scholar 

  4. Tony SM et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  Google Scholar 

  5. Toll J, Paut CJ (2010) Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clin Ther 32(3):437–453

    Article  Google Scholar 

  6. Stallard N, Todd S (2010) Seamless phase II/III design. Stat Methods Med Res 20(6):623–634

    Article  MathSciNet  Google Scholar 

  7. Magnusson BP, Turnbull BW (2013) Group sequential enrichment design incorporating subgroup selection. Stat Med 32(16):2695–2714

    Article  MathSciNet  Google Scholar 

  8. Mehta C, Schafer H, Daniel H, Irle S (2014) Biomarker driven population enrichment for adaptive oncology trials with time to event endpoints. Stat Med 33(26):4515–4531

    Article  MathSciNet  Google Scholar 

  9. Chen C, Sun L, Li CL (2013) Evaluation of early efficacy endpoints for proof-of-concept trials. J Biopharm Stat 23(2):413–424

    Article  MathSciNet  Google Scholar 

  10. Stallard N (2010) A confirmatory seamless phase II/III clinical trial design incorporating short-term endpoint information. Stat Med 29:959–971

    MathSciNet  Google Scholar 

  11. Royston P, Mahesh KBP, Qian W (2003) Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer. Stat Med 22(14):2239–2256

    Article  Google Scholar 

  12. Jenkins M, Stone A, Jennison C (2011) An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. Pharm Stat 10:347–356

    Article  Google Scholar 

  13. Wang J, Chang M, Menon S (2014) Biomarker-informed adaptive design. In: Chang M (ed) Clinical and statistical considerations in personalized medicine. CRC Press, Boca Raton, pp 129–148

    Google Scholar 

  14. Friede T, Parsons N, Stallard N, Todd S, Marquez EV, Chataway J, Nicholas R (2011) Designing a seamless phase II/III clinical trial using early outcomes for treatment selection: an application in multiple sclerosis. Stat Med 30(13):1528–1540

    MathSciNet  Google Scholar 

  15. Burzykowski T et al (2001) Validation of surrogate end points in multiple randomized clinical trials with failure time end points. J R Stat Soc: Ser C (Appl Stat) 50(4):405–422

    Article  MathSciNet  MATH  Google Scholar 

  16. Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distribution. J Am Stat Assoc 84:1065–1073

    Article  MathSciNet  Google Scholar 

  17. Chen C, Li X, Yuan S, Antonijevic Z, Kalamegham R, Beckman RA (2016) Statistical design and considerations of a phase 3 basket trial for simultaneous investigation of multiple tumor types in one study. Stat Biopharm Res 8:1

    Article  Google Scholar 

  18. Chen C, Li N, Shentu Y, Pang L, Beckman RA (2016) Adaptive informational design of confirmatory phase III trials with an uncertain biomarker effect to improve the probability of success. Stat Biopharm Res 8:1. doi:10.1080/19466315.2016.1173582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Li.

Appendix

Appendix

R codes of type I error calculation and power when using intermediate endpoint:

################################################# ###########

###################

# Use Intermediate endpoint to select/deselect biomarker subpopulations at IA (assume treatment effects are ordered)

###########################################################

######################################

#Type I error #####

###################

#function mf1: Probability of dropping first m subgroups and has a positive study on the last (k-m) subgroups at the final analysis under H0#

#k: total number of biomarker subgroups

#m: number of deselected biomarker subgroups

#delta1: treatment effect of intermediate endpoint

#rho: correlation between intermediate endpoint and clinical endpoint

#D_int: A vector with number of events using intermediate endpoint at IA

#D_final: A vector with number of events using final clinical endpoint at IA

#Assume enrollment completed at IA

#alphat: nominal alpha level at IA

#alphastar: nominal alpha level at final analysis

# deselect m subgroup (m>=1)

mf1i<-function(alphastar, alphat, m, k, delta1, rho, D_int){

low<-c(rep(-Inf,m), qnorm(1-alphat), qnorm(1-alphastar))

up<-c(rep(qnorm(1-alphat),m), Inf, Inf)

test<-matrix(0, ncol=m+2, nrow=m+2)

diag(test)<-1;

test[m+2,m+1]<-test[m+1,m+2]<-rho*sqrt(D_final[m+1]/

sum(D_final[(m+1):k]))

# subgroups are disjoint, but Z(-m) includes Y(m+1)

altmeani<-rep(0,m+2)

altmeani[1:(m+1)]<-sqrt(D_int[1:(m+1)]/4)*delta11:(m+1)]

temp<-pmvnorm(lower=low, upper=up, mean=altmeani,corr=test)[1]

return(temp)

}

#Overall type I error:

type1upi<-function(alphastar, alphat, k, delta1 rho, D_int){

# probability of including all at the final analysis i.e., m=0

low <- c(qnorm(1-alphat), qnorm(1-alphastar))

up <- rep(Inf, 2)

test1 <- matrix(0, ncol=2,nrow=2);

diag(test1) <- 1; test1[1,2] <- test1[2,1] <-rho*sqrt(D_final[1]/sum(D_final))

altmeani<-rep(0,2)

altmeani[1]<-sqrt(D_int[1]/4)*delta1[1]

temp <- pmvnorm(lower=low, upper= up, mean=altmeani, corr=test1)[1]

#Probability of including m=1 to k-1 groups at the final analysis

for (m in 1:(k-1)){

temp<-temp+mf1i(alphastar, alphat,m=m,k,delta1, rho, D_int)

}

return(temp-0.025)

}

##################################################################

# Grid search delta to find alpha* for final analysis

##################################################################

length<-100

deltatemp<-c(0:length)*0.1

typ1temp<-matrix(rep(1,length*length),nrow=length)

minalphastar<-function(alphat, k,rho, D_int){

for (i in(1: length)){

for (j in (1:length)){

typ1temp[i,j]<-uniroot(type1upi, c(0,1), alphat, k, delta1=c(deltatemp[i],

deltatemp[j]), rho,D_int)$root

}

}

minalphastar<-min(typ1temp)

return(minalphastar)

}

##### Power ######################

# delta1: treatment effect of intermediate endpoint

# delta: treatment effect of final clinical endpoint

powerupi<-function(delta,D_final, k,alphat, delta1, rho, D_int, alphastar){

# alphastar<- minalphastar(alphat, t, k,rho, D)

# probability of including all under alternative hypotheses, m=0

mean1 <- c(sqrt(D_int[1]/4)*delta1[1], sum(delta*D_final/4)/sqrt(sum(D_final/4)))

corr1 <- matrix(0, ncol=2, nrow=2)

diag(corr1) <- 1; corr1[1,2] <- corr1[2,1] <- rho*sqrt(D_final[1]/sum(D_final))

low1 <- c(qnorm(1-alphat), qnorm(1-alphastar))

up1 <- rep(Inf, 2)

temp <- pmvnorm(lower=low1, upper=up1, mean=mean1, corr=corr1)[1]

# probability of excluding the first m hypotheses, with m=1,to k-1.

for (m in 1:(k-1)){

mean2<-c(sqrt(D_int[1:(m+1)]/4)*delta1[1:(m+1)], sum(delta[(m+1):k]*D_final

[(m+1):k]/4)/sqrt(sum(D_final[(m+1):k]/4)))

corr2 <- matrix(0, ncol=m+2, nrow=m+2); diag(corr2) <- 1;

corr2[m+1,m+2] <- corr2[m+2, m+1] <- rho*sqrt(D_final[m+1]/sum(D_final

[(m+1):k]))

low2 <- c(rep(-Inf, m),qnorm(1-alphat), qnorm(1-alphastar))

up2 <- c(rep(qnorm(1-alphat), m), Inf, Inf)

temp <- temp+pmvnorm(lower=low2, upper=up2, mean=mean2, corr=corr2)[1]

}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, C. & Li, W. Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints. Stat Biosci 10, 324–341 (2018). https://doi.org/10.1007/s12561-016-9178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-016-9178-4

Keywords

Navigation