Skip to main content
Log in

Disease Diagnosis from Immunoassays with Plate to Plate Variability: A Hierarchical Bayesian Approach

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

The standard methods of diagnosing disease based on antibody microtiter plates are quite crude. Few methods create a rigorous underlying model for the antibody levels of populations consisting of a mixture of positive and negative subjects, and fewer make full use of the entirety of the available data for diagnoses. In this paper, we propose a Bayesian hierarchical model that provides a systematic way of pooling data across different plates, and accounts for the subtle sources of variations that occur in the optical densities of typical microtiter data. In addition to our Bayesian method having good frequentist properties, we find that our method outperforms one of the standard crude approaches (the “3 SD Rule”) under reasonable assumptions, and provides more accurate disease diagnoses in terms of both sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Casella G, George E (1992) Explaining the Gibbs sampler. Am Stat 46:167–174

    MathSciNet  Google Scholar 

  2. Choi Y, Johnson W, Collins M, Gardner I (2006) Bayesian inferences for receiver operating characteristic curves in the absence of a gold standard. J Agric Biol Environ Stat 11:210–229. doi:10.1198/108571106X110883

    Article  Google Scholar 

  3. Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  MathSciNet  MATH  Google Scholar 

  4. Gelman A, Chew GL, Shnaidman M (2004) Bayesian analysis of serial dilution assays. Biometrics 60:407–417

    Article  MathSciNet  MATH  Google Scholar 

  5. Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:1–19

    Article  MathSciNet  Google Scholar 

  6. Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41

    Article  Google Scholar 

  7. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MATH  Google Scholar 

  8. Higgins KM, Davidian M, Chew G, Burge H (1998) The effect of serial dilution error on calibration inference in immunoassay. Biometrics 54:19–32

    Article  MATH  Google Scholar 

  9. Hobert JP, Roy V, Robert C (2011) Improving the convergence properties of the data augmentation method with an application to Bayesian mixture modeling. Stat Sci 26(3):332–351

    Article  MathSciNet  MATH  Google Scholar 

  10. Irion A, Beck HP, Smith T (2002) Assessment of positivity in immuno-assays with variability in background measurements: a new approach applied to the antibody response to Plasmodium falciparum MSP2. J Immunol Methods 259:111–118

    Article  Google Scholar 

  11. Kurkjian KM, Vaz LE, Haque R, Cetre-Sossah C, Akhter S, Roy S, Steurer F, Amann J, Ali M, Chowdhury R, Wagatsuma Y, Williamson J, Crawford S, Breiman RF, Maguire JH, Bern C, Secor WE (2005) Application of an improved method for the recombinant k 39 enzyme-linked immunosorbent assay to detect visceral leishmaniasis disease and infection in Bangladesh. Clin Diagn Lab Immunol 12:1410–1415

    Google Scholar 

  12. Levy MZ, Bowman NM, Kawai V, Plotkin JB, Waller LA, Cabrera L, Steurer F, Seitz AE, Pinedo-Cancino VV, Cornejo del Carpio JG, Cordova Benzaquen E, McKenzie FE, Maguire JH, Gilman RH, Bern C (2009) Spatial patterns in discordant diagnostic test results for Chagas disease: links to transmission hotspots. Clin Infect Dis 48(8):1104–1106

    Article  Google Scholar 

  13. Limmathurotsakul D, Chantratita N, Teerawattanasook N, Piriyagitpaiboon K, Thanwisai A, Wuthiekanun V, Day NP, Cooper B, Peacock SJ (2011) Enzyme-linked immunosorbent assay for the diagnosis of melioidosis: better than we thought. Clin Infect Dis 52:1024–1028

    Article  Google Scholar 

  14. Lindsay BG, Roeder K (1993) Uniqueness of estimation and identifiability in mixture models. Can J Stat 21:139–147

    Article  MathSciNet  MATH  Google Scholar 

  15. Morris C (1983) Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc 78(381):47–63

    Article  MathSciNet  MATH  Google Scholar 

  16. Moulton LH, Curriero FC, Barroso PF (2002) Mixture models for quantitative HIV RNA data. Stat Methods Med Res 11:317–325

    Article  MATH  Google Scholar 

  17. Nielsen SS, Gronbaek C, Agger JF, Houe H (2002) Maximum-likelihood estimation of sensitivity and specificity of ELISAs and faecal culture for diagnosis of paratuberculosis. Prev Vet Med 53:191–204

    Article  Google Scholar 

  18. Opsteegh M, Teunis P, Mensink M, Zuchner L, Titilincu A, Langelaar M, van der Giessen J (2010) Evaluation of ELISA test characteristics and estimation of Toxoplasma gondii seroprevalence in Dutch sheep using mixture models. Prev Vet Med 96:232–240

    Article  Google Scholar 

  19. Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann Stat 12(4):1151–1172. doi:10.1214/aos/1176346785

    Article  MathSciNet  MATH  Google Scholar 

  20. Verani JR, Seitz A, Gilman RH, LaFuente C, Galdos-Cardenas G, Kawai V, de LaFuente E, Ferrufino L, Bowman NM, Pinedo-Cancino V, Levy MZ, Steurer F, Todd CW, Kirchhoff LV, Cabrera L, Verastegui M, Bern C (2009) Geographic variation in the sensitivity of recombinant antigen-based rapid tests for chronic Trypanosoma cruzi infection. Am J Trop Med Hyg 80(3):410–415

    Google Scholar 

  21. Wang C, Turnbull B, Grhn Y, Nielsen S (2007) Nonparametric estimation of roc curves based on bayesian models when the true disease state is unknown. J Agric Biol Environ Stat 12:128–146. doi:10.1198/108571107X178095

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver A. Entine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 846 KB)

Supplementary material 2 (pdf 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A. Entine, O., Small, D.S., Jensen, S.T. et al. Disease Diagnosis from Immunoassays with Plate to Plate Variability: A Hierarchical Bayesian Approach. Stat Biosci 7, 206–224 (2015). https://doi.org/10.1007/s12561-014-9113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-014-9113-5

Keywords

Navigation