Skip to main content
Log in

A Variance-Component Framework for Pedigree Analysis of Continuous and Categorical Outcomes

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Variance-component methods are popular and flexible analytic tools for elucidating the genetic mechanisms of complex quantitative traits from pedigree data. However, variance-component methods typically assume that the trait of interest follows a multivariate normal distribution within a pedigree. Studies have shown that violation of this normality assumption can lead to biased parameter estimates and inflations in type-I error. This limits the application of variance-component methods to more general trait outcomes, whether continuous or categorical in nature. In this paper, we develop and apply a general variance-component framework for pedigree analysis of continuous and categorical outcomes. We develop appropriate models using generalized-linear mixed model theory and fit such models using approximate maximum-likelihood procedures. Using our proposed method, we demonstrate that one can perform variance-component pedigree analysis on outcomes that follow any exponential-family distribution. Additionally, we also show how one can modify the method to perform pedigree analysis of ordinal outcomes. We also discuss extensions of our variance-component framework to accommodate pedigrees ascertained based on trait outcome. We demonstrate the feasibility of our method using both simulated data and data from a genetic study of ovarian insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abecasis GR, Cardon LR, Cookson WOC (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292

    Article  Google Scholar 

  2. Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, Epstein MP, Charen K, He W, Taylor KC, Sherman SL (2007) Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod 22:2142–2152

    Article  Google Scholar 

  3. Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J (1999) Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am J Hum Genet 65:531–544

    Article  Google Scholar 

  4. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  Google Scholar 

  5. Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 54:535–543

    Google Scholar 

  6. Blangero J, Williams JT, Almasy L (2001) Variance component methods for detecting complex trait loci. In: Rao DC, Province MA (eds) Genetic dissection of complex traits. Academic Press, San Diego, pp 151–182

    Google Scholar 

  7. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25

    Article  MATH  Google Scholar 

  8. Burton PR, Tiller KJ, Gurrin LC, Cookson WO, Musk AW, Palmer LJ (1999) Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol 17:118–140

    Article  Google Scholar 

  9. Burton PR, Palmer LJ, Jacobs K, Keen KJ, Olson JM, Elston RC (2000) Ascertainment adjustment: where does it take us? Am J Hum Genet 67:1505–1514

    Article  Google Scholar 

  10. de Andrade M, Fridley B, Boerwinkle E, Turner S (2003) Diagnostic tools in linkage analysis of quantitative traits. Genet Epidemiol 24:302–308

    Article  Google Scholar 

  11. de Andrade M, Gueguen R, Visvikis S, Sass C, Siest G, Amos CI (2002) Extension of variance components approach to incorporate temporal trends and longitudinal pedigree data analysis. Genet Epidemiol 22:221–232

    Article  Google Scholar 

  12. Diao G, Lin DY (2005) A powerful and robust method for mapping quantitative trait loci in general pedigrees. Am J Hum Genet 77:97–111

    Article  Google Scholar 

  13. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O’Connell P, Stern MP (1999) Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 64:1127–1140

    Article  Google Scholar 

  14. Duggirala R, Williams JT, Williams-Blangero S, Blangero J (1997) A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol 14:987–992

    Article  Google Scholar 

  15. Epstein MP (2002) Comment on “Ascertainment adjustment in complex diseases”. Genet Epidemiol 23:209–213

    Article  Google Scholar 

  16. Epstein MP, Lin X, Boehnke M (2002) Ascertainment-adjusted parameter estimates revisited. Am J Hum Genet 70:886–895

    Article  Google Scholar 

  17. Epstein MP, Lin X, Boehnke M (2003) A tobit variance-component method for linkage analysis of censored trait data. Am J Hum Genet 72:611–620

    Article  Google Scholar 

  18. Fulker DW, Cherny SS, Cardon LR (1995) Multipoint interval mapping of quantitative trait loci using sib pairs. Am J Hum Genet 56:1224–1233

    Google Scholar 

  19. Glidden DV, Liang K-Y (2002) Ascertainment adjustment in complex diseases. Genet Epidemiol 23:201–208

    Article  Google Scholar 

  20. Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    Article  Google Scholar 

  21. Hasstedt SJ (1993) Variance components/major locus likelihood approximation for quantitative, polychotomous, and multivariate data. Genet Epidemiol 10:145–158

    Article  Google Scholar 

  22. Hopper JL, Mathews JD (1982) Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet 46:373–383

    Article  MATH  Google Scholar 

  23. Hunter JE, Epstein MP, Tinker SW, Charen KW, Sherman SL (2008) Fragile X-associated primary ovarian insufficiency: evidence for additional genetic contributions to severity. Genet Epidemiol 32:553–559

    Article  Google Scholar 

  24. Jacquard A (1974) The genetic structure of populations. Springer, New York

    MATH  Google Scholar 

  25. Kruglyak L, Daly M, Reeve-Daly M, Lander E (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    Google Scholar 

  26. Kruglyak L, Lander ES (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454

    Google Scholar 

  27. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  Google Scholar 

  28. Lange K (1978) Central limit theorems for pedigrees. J Math Biol 6:59–66

    Article  MathSciNet  MATH  Google Scholar 

  29. Lange K, Boehnke M (1983) Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet 14:513–524

    Article  Google Scholar 

  30. Lange K, Westlake J, Spence MA (1976) Extensions to pedigree analysis. III. Variance components by the scoring method. Ann Hum Genet 39:485–491

    Article  Google Scholar 

  31. Lin X (1997) Variance component testing in generalised linear models with random effects. Biometrika 84:309–326

    Article  MathSciNet  MATH  Google Scholar 

  32. McCullagh P (1980) Regression models for ordinal data. J R Stat Soc, Ser B 42:109–142

    MathSciNet  MATH  Google Scholar 

  33. McCullagh P, Nelder JA (1983) Generalized linear models. Chapman and Hall, London

    MATH  Google Scholar 

  34. McCulloch CE, Searle SR (2000) Generalized, linear, and mixed models. Wiley-Interscience, New York

    Book  Google Scholar 

  35. Mitchell BD, Ghosh S, Schneider JL, Birznieks G, Blangero J (1997) Power of variance component linkage analysis to detect epistasis. Genet Epidemiol 14:1017–1022

    Article  Google Scholar 

  36. Murray A, Webb J, MacSwiney F, Shipley EL, Morton NE, Conway GS (1999) Serum concentrations of follicle stimulating hormone may predict premature ovarian failure in FRAXA premutation women. Hum Reprod 14:1217–1218

    Article  Google Scholar 

  37. Pankratz VS, de Andrade M, Therneau TM (2005) Random effects Cox proportional hazards model: general variance components methods for time-to-event data. Genet Epidemiol 28:97–109

    Article  Google Scholar 

  38. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Graph Stat 4:12–35

    Article  Google Scholar 

  39. SAS Institute (1999) SAS version 8, Cary, NC

  40. Self SG, Liang K-Y (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J Am Stat Assoc 82:605–610

    Article  MathSciNet  MATH  Google Scholar 

  41. Sham PC, Purcell S (2001) Equivalence between Haseman–Elston and variance-components linkage analyses for sib pairs. Am J Hum Genet 68:1527–1532

    Article  Google Scholar 

  42. Sherman SL (2000) Premature ovarian failure in the fragile X syndrome. Am J Med Genet 97:189–194

    Article  Google Scholar 

  43. Sherman S, Pletcher BA, Driscoll DA (2005) Fragile X syndrome: diagnostic and carrier testing. Genet Med 7:584–587

    Article  Google Scholar 

  44. Solomon PJ, Cox DR (1992) Nonlinear component of variance models. Biometrika 79:1–11

    Article  MathSciNet  MATH  Google Scholar 

  45. Spiegelhalter D, Thomas A, Best N (2000) WinBUGS version 1.3 user manual. MRC Biostatistics Unit, Cambridge, UK

  46. Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, Yadav-Shah M, Sherman SL (2005) Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod 20:402–412

    Article  Google Scholar 

  47. Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    Article  MathSciNet  MATH  Google Scholar 

  48. Williams JT, Blangero J (1999) Comparison of variance components and sibpair-based approaches to quantitative trait linkage analysis in unselected samples. Genet Epidemiol 16:113–134

    Article  Google Scholar 

  49. Yu X, Knott SA, Visscher PM (2004) Theoretical and empirical power of regression and maximum-likelihood methods to map quantitative trait loci in general pedigrees. Am J Hum Genet 75:17–26

    Article  Google Scholar 

  50. Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach. J Am Stat Assoc 86:79–86

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, M.P., Hunter, J.E., Allen, E.G. et al. A Variance-Component Framework for Pedigree Analysis of Continuous and Categorical Outcomes. Stat Biosci 1, 181–198 (2009). https://doi.org/10.1007/s12561-009-9010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-009-9010-5

Keywords

Navigation