Skip to main content

Advertisement

Log in

Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Epigallocatechin gallate (EGCG) of green tea and the nutraceutical CystiCran®-40 (containing 40% proanthocyanidins) of the cranberry plant have been associated with antiviral activity. The purpose of this work was to determine the mechanism of antiviral synergy between each compound. Coliphage T4II (phage T4) and the rotavirus strain SA-11(RTV) were used as model virus systems. Individual and combined flavonoids structural and molecular weight analyses were performed by NMR and HPCL/MS, respectively. A suboptimal concentration of EGCG or C-40 alone or in combination reduced phage infectivity by ≤10%. Similarly, EGCG (30 µg/ml) and C-40 (25 µg/ml), respectively, reduced RTV titers by 3 and 13%. However, RTV titers were reduced by 32% (p < .05) with both flavonoids used in combination. RTV was not recognized in host cells by electron microscopy 24-h post-inoculation. NMR and HPLC/MS findings revealed significant structural and potential changes in molecular weight of the flavonoids in complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad, A. L. M., & Tyrrell, D. A. J. (1986). Synergism between anti-rhinovirus antivirals: Various human interferons and a number of synthetic compounds. Antiviral Research, 6(4), 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Amoros, M., Simões, C. M., Girre, L., Sauvager, F., & Cormier, M. (1992). Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture: Comparison with the antiviral activity of propolis. Journal of Natural Products, 55(12), 1732–1740.

    Article  CAS  PubMed  Google Scholar 

  • Andrei, G., & Snoeck, R. (2013). Herpes simplex virus drug-resistance: New mutations and insights. Current Opinion in Infectious Diseases, 26(6), 551–560.

    Article  CAS  PubMed  Google Scholar 

  • Ayisi, N. K., Gupta, S. V., & Babiuk, L. A. (1985). Combination chemotherapy: Interaction of 5-methoxymethyldeoxyuridine with trifluorothymidine, phosphonoformate and acycloguanosine against herpes simplex viruses. Antiviral Research, 5(1), 13–27.

    Article  CAS  PubMed  Google Scholar 

  • Benelli, R., Venè, R., Bisacchi, D., Garbisa, S., & Albini, A. (2002). Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine protease. Biological Chemistry, 383(3), 101–105.

    CAS  PubMed  Google Scholar 

  • Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrigtion, 25(2), 79–99.

    Article  CAS  Google Scholar 

  • Carneiro, B. M., Batista, M. N., Braga, S., Nogueira, M. L., & Rahal, P. (2016). The green tea molecule EGCG inhibits Zika virus entry. Virology, 496, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, O. V., Botelho, C. V., Ferreira, C. G., Ferreira, H. C., Santos, M. R., Diaz, M. A., et al. (2013). In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of structural differences for antiviral design. Research in Veterinary Science, 95(2), 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Cliver, D. (2009). Capsid and infectivity in virus detection. Food and Environmental Virology, 1, 123–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., et al. (2008). Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature, 453, 1258–1261.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran, M. P., McKay, D. L., & Blumberg, J. B. (2012). Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. Journal of Nutrition, Gerontology, and Geriatrics, 31(3), 176–189.

    Article  Google Scholar 

  • Cuevas, J. M., Geller, R., Garijo, R., López-Aldeguer, J., & Sanjuán, R. (2015). Extremely high mutation rate of HIV-1 in vivo. PLoS Biology, 13(9), e1002251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.

    Article  CAS  PubMed  Google Scholar 

  • de Lourdes Mata-Bilbao, M., Ristiona Andres-Laciueva, C., Roura, E., Jauregui, O., Torre, C., & Maria Lamuela-Raventos, R. (2007). A new LC/MS/MS rapid and sensitive method for the determination of green tea catechins and their metabolites in biological samples. Agricultural and Food Chemistry, 55(22), 8857–8863.

    Article  Google Scholar 

  • Du, G.-J., Zhang, Z., Wen, X.-D., Yu, C., Calway, T., Yuan, C.-S., et al. (2012). Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 4(11), 1679–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gescher, K., Hensel, A., Hafezi, W., Derksen, A., & Kuhn, J. (2011). Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Research, 89(1), 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry, 56(9), 4494–4497.

    Google Scholar 

  • Hakki, M., & Chou, S. (2011). The biology of cytomegalovirus drug resistance. Current Opinion in Infectious Diseases, 24(6), 605–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, H. Y., Cheng, M. L., Weng, S. F., Leu, Y. L., & Chiu, D. T. (2009). Antiviral effect of epigallocatechin gallate on enterovirus 71. Journal of Agricultural and Food Chemistry, 57(14), 6140–6147.

    Article  CAS  PubMed  Google Scholar 

  • Hübner, W., McNerney, G. P., Chen, P., Dale, B. M., Gordon, R. E., Chuang, F. Y., et al. (2009). Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science, 323(5922), 1743–1747.

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaacs, C. E., Guang, Y. W., Xu, W., Jia, J. H., Rohan, L., Corbo, C., et al. (2008). Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrobial Agents and Chemotherapy, 52(3), 962–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs, C. E., Xu, W., Merz, G., Hillier, S., Rohan, L., & Wen, G. Y. (2011). Digallate dimers of (−)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrobial Agents and Chemotherapy, 55(12), 5646–5653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, H.-F., Li, X. J., & Zhang, H.-Y. (2009). Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Reports, 10(3), 194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassaye, S. G., Grossman, Z., Balamane, M., Johnston-White, B., Liu, C., Kumar, P., et al. (2016). Transmitted HIV drug resistance high and longstanding in metropolitan Washington, DC. Clinical Infectious Disease, 63(6), 836–843.

    Article  Google Scholar 

  • Kawai, K., Tsuno, N. H., Kitayama, J., Okaji, Y., Yazawa, K., Asakage, M., et al. (2003). Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. Journal of Allergy and Clinical Immunology, 112(5), 951–957.

    Article  CAS  PubMed  Google Scholar 

  • Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular disease. Food Research International, 59, 41–52.

    Article  CAS  Google Scholar 

  • Legeay, S., Rodier, M., Fillon, L., Faure, S., & Clere, N. (2015). Review epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients, 7(7), 5443–5468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Hattori, T., & Kodama, E. N. (2011). Epigallocatechin gallate inhibits the HIV reverse transcription step. Antiviral Chemistry & Chemotherapy, 21(6), 239–243.

    Article  CAS  Google Scholar 

  • Lipson, S. M., & Alsmadi, O. (1989). Enhancement of bacteriophage φX-174 plaques by homoionic clay minerals. Journal of General Microbiology, 135, 3497–3503.

    CAS  Google Scholar 

  • Lipson, S. M., Gordon, R. E., Karthekeyan, L., Singh, M., Burdowski, A., Roy, M., et al. (2010). Effect of cranberry and grape juice drinks on enteric virus Integrity, infectivity in cell culture, and pathology in the animal model. In M. Qian & A. Rimando (Eds.), Flavor and health benefits of small fruits (pp. 177–195). Chicago, IL: American Chemistry Society Press.

    Chapter  Google Scholar 

  • Lipson, S. M., Ozen, F. S., Karthikeyan, L., Bulut, O., Hyka, X., Sullivan, G. L., et al. (2013). Flavonoid-associated direct loss of rotavirus antigen/antigen activity in cell-free suspension. Journal of Medicinally Active Plants, 2(1), 10–24.

    Google Scholar 

  • Lipson, S. M., Ozen, F. S., Louis, S., & Karthikeyan, L. (2015). Comparison of α-glucosyl hesperidin and epigallocatechin gallate on the loss of rotavirus infectivity in host cell cultures. Frontiers in Microbiology, 6, 359. doi:10.3389/fmicb.2015.00359.

    PubMed  PubMed Central  Google Scholar 

  • Liu, R. H. (2013). Dietary bioactive compounds and their health implications. Journal of Food Science, 78(s1), A18–A25.

    Article  CAS  PubMed  Google Scholar 

  • Martin, M. M., Rockholm, D. C., & Martin, J. S. (1985). Effects of surfactants, pH, certain cations on precipitation of proteins by tannins. Journal of Chemical Ecology, 11(4), 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Z.-D., Birch, C., Heath, R., & Gust, I. (1987). Physicochemical stability and inactivation of human and simian rotaviruses. Applied and Environmental Microbiology, 53(4), 727–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai, T., Miyaichi, Y., Tomimori, T., Suzuki, Y., & Yamaha, H. (1992). Antiviral activity of two flavonoids from Tanacetum microphyllum. Antiviral Research, 19(3), 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Orhan, D. D., Özçelik, B., Özgen, S., & Ergun, F. (2010). Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiology Research, 165(6), 496–504.

    Article  CAS  Google Scholar 

  • Razonable, R. R. (2011). Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clinic Proceedings, 86(10), 1009–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty percent endpoints. American Journal of Hygiene, 27, 493–497.

    Google Scholar 

  • Rendeiro, C., Rhodes, J. S., & Spencer, J. P. E. (2015). The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochemistry International, 89, 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Reygaert, W. C. (2014). The antimicrobial possibilities of green tea. Frontiers in Microbiology, 5, 434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross, M., Rosato, V., Bosetti, C., Lagiou, P., Parpinel, M., Bertuccio, P., et al. (2010). Flavonoids, proanthocyanidins, and the risk of stomach cancer. Cancer Causes and Control, 21(10), 1597–1604.

    Article  Google Scholar 

  • Rubin, L. G. Pediatric infectious diseases. Personal Communication. Department of Pediatrics, Northwell Health Physician Partners, New Hyde Park, NY.

  • Song, J. M., Lee, K. H., & Seong, B. L. (1995). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68(2), 66–74.

    Article  Google Scholar 

  • Steinmann, J., Buer, J., Pietschmann, T., & Steinmann, E. (2013). Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology, 168(5), 1059–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapas, A., Sakarkar, D. M., & Kakde, R. B. (2008). Flavonoids as nutraceuticals: A review. Tropical Journal of Pharmacology Research, 7(3), 1089–1099.

    Article  Google Scholar 

  • Tomasevich, L. L., & Collum, D. B. (2014). Method of continuous variation: Characterization of alkali metal enolates using 1H and 19F NMR spectroscopies. Journal of the American Chemical Society, 136(27), 9710–9718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortora, G. J., Funke, B. R., & Case, C. L. (2013). Microbiology. An introduction (11th edn, pp. 579–585). New York: Pearson Education Press.

  • Vlietinck, A. J., De Bruyne, T., Apers, S., & Pieters, L. A. (1998). Plant derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Medicine, 64, 97–109.

    Article  CAS  Google Scholar 

  • Weber, J. M., Ruzindana-Umunyana, A., Imbeault, L., & Sircar, S. (2003). Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Research, 58(2), 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Zhiqiang, W., Du, J., Hu, Y., Liu, L., Yang, F., et al. (2012). Anti-Japanese-encephalitis-viral effects of kaempferol and Daidzin and their RNA-binding characteristics. PLoS ONE, 7(1), e30259. doi:10.1371/journal.pone.0030259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, L., Hu, J., Shu, W., Gao, B., & Xiong, S. (2015). Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death and Disease, 6, e1770. doi:10.1038/cddis.2015.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the St. Francis College Faculty Research Committee and by special research funds from the New York City College of Technology of the City University of New York. The authors wish to thank Heleen P. Lipson, M.S.E., for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Lipson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipson, S.M., Karalis, G., Karthikeyan, L. et al. Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food Environ Virol 9, 434–443 (2017). https://doi.org/10.1007/s12560-017-9299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9299-z

Keywords

Navigation