Skip to main content

Advertisement

Log in

Binocular Energy Estimation Based on Properties of the Human Visual System

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

3D applications are very popular nowadays. They allow to bring new sensations (e.g., cinema, gaming, etc) and new ways for analyzing data (e.g., video-surveillance, pattern recognition, etc). The large availability of 3D data ia better understanding of human 3D perception in order to improve the quality of 3D visual data, increase the visual comfort and avoid visual fatigue and visual illness. In this paper, we explore the binocular perception through its various indices. The focus is put on the binocular energy and its evolution with regard to image impairments. Two types of cells are explored, that is, simple and complex cells responsible of the sensory fusion in the visual cortex. A model is proposed for these cells in order to estimate the binocular energy from color stereo-pairs. The integration of stereoscopic constraints such as unicity, coherence and occlusion allows to refine the proposed model described previously by taking into account the occluded and the non-occluded information. A deep experimentation demonstrates the efficiency of the described modeling. The estimated binocular energy presents a correlation with the impairment level caused by compression or noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion. J Opt Soc Am. 1985;2(2):284–99.

    Article  CAS  Google Scholar 

  2. Akhter R, Sazzad ZMP, Horita Y, Baltes J. No reference stereoscopic image quality assessment. Image Qual Syst Perform. 2010;7524:17–21.

    Google Scholar 

  3. Anderson BL. The role of partial occlusion in stereopsis. Nature. 1994;367(6461):365–68.

    Article  PubMed  CAS  Google Scholar 

  4. Ates HF, Orchard MT. A nonlinear image representation in wavelet domain using complex signals with single quadrant spectrum. In: Asilomar conference signals, systems, computers, vol 2. 2003;pp. 1966–70.

  5. Barlow HB, Blakemore C, Pettigrew JD. The neural mechanism of binocular depth discrimination. J Physiol. 1967;193:327–42

    PubMed  CAS  Google Scholar 

  6. Blake R, Wilson HR. Neural models of stereoscopic vision. Trends in neurosciences. Int J Comput Vis. 1991;14:445–52.

    CAS  Google Scholar 

  7. Campbell FW, Cooper GF, Enroth-Cugell C. The spatial selectivity of the visual cells of the cat. J Physiol. 1969;203:223–35.

    Google Scholar 

  8. Candès E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul. 2005;5(3):861–99.

    Google Scholar 

  9. Chessa M, Canessa A, Gibaldi A, Solari F, Sabatini S. Embedding fixation constraints into binocular energy-based models of depth perception. In: International conference on cognitive and neural systems. Boston, Massachusetts; 2009.

  10. Christen WG, Mower DG. Effects of monocular occlusion and diffusion on visual system development in the cat. Brain Res. 1987;415(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  11. DeAngelis GC, Ohzawa I, Freeman RD. Depth is encoded in the visual cortex by a specialized receptive field structure. J Nat. 1991;352:156–59.

    Article  CAS  Google Scholar 

  12. Delorme A, Fluckiger M. Perception et réalité, une introduction à la psychologie des perceptions. Brussels: De Boeck; 2003.

  13. Do M, Vetterli M. Pyramidal directional filter banks and curvelets. In: IEEE proceedings of the international conference image; 2001.

  14. Donoho DL. Wedgelets: nearly-minimax estimation of edges, annals of stat. Commun Pure Appl Math. 1999;27(3):859–97.

    Google Scholar 

  15. Fleet DJ, Wagner H, Heeger DJ. Disparity from local weighted phase-correlation. In: Proceedings of the IEEE international conference on systems. Man, Cybernetics; 1994. p. 48–56.

  16. Fleet DJ, Wagner H, Heeger DJ. Neural encoding of binocular disparity: energy model, position shifts and phase shifts. Vis Res. 1996;36(12):1839–857.

    Article  PubMed  CAS  Google Scholar 

  17. Foster KH, Gaska JP, Marcelja S, Pollen DA. Phase relationships between adjacent simple cells in the feline visual cortex. J Physiol. 1983;345:22.

    Google Scholar 

  18. Geiger D, Ladendorf B, Yuille A. Occlusions and binocular stereo. Int J Comput Vis. 1995;14:211–26.

    Article  Google Scholar 

  19. Geman S, Geman D. Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 1984;6(6):721–41.

    Article  PubMed  CAS  Google Scholar 

  20. Grossberg S. 3d vision and figure ground separation by visual cortex. Percept Psychophys. 1994;55(1): 48–120.

    Article  PubMed  CAS  Google Scholar 

  21. Grossberg S, McLoughlin PN. Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images. Trans Soc Comput Simul Int. 1997;14:583–1605.

    Google Scholar 

  22. Hayashi R, Maeda T, Shimojo S, Tachi S. An integrative model of binocular vision: a stereo model utilizing interocularly unpaired points produces both depth and binocular rivalry. Vis Res. 2004;44(20):2367–380.

    Article  PubMed  Google Scholar 

  23. Haynes JD, Deichmann R, Rees G. Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. J Nat. 2005;438(7067):496–99.

    Article  CAS  Google Scholar 

  24. Hibbard PB. Binocular energy responses to natural images. Vis Res. 2008;48(12):1427–439.

    Article  PubMed  Google Scholar 

  25. Horaud R, Monga O. Vision par ordinateur: outils fondamentaux. Paris: Editions Hermès; 1995. p. 426. ISBN:978-2866014810.

  26. Howard IP, Rogers BJ. Depth perception. Oxford: Oxford Scholarship; 2008.

    Google Scholar 

  27. Hubel D, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

    Google Scholar 

  28. Hubel D, Wiesel TN. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. J Nat. 1970;225:41–2.

    Google Scholar 

  29. Jones JP, Palmer LA. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol. 1987;58(6):1233–258.

    PubMed  CAS  Google Scholar 

  30. Kingsbury N. Image processing with complex wavelets. Phil Trans Royal Soc Lond A. 1997;357:2543–560.

    Article  Google Scholar 

  31. Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Physiol. 1953;16:37–68.

    CAS  Google Scholar 

  32. Lehky SR, Maunsell JH. No binocular rivalry in the lgn of alert macaque monkeys. Vis Res. 1996;36(9):1225–234.

    Article  PubMed  CAS  Google Scholar 

  33. Liu A, Gaska JP, Jacobson LD, Pollen DA. Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat’s visual cortex. Vis Res. 1992;32(1193–198).

    Google Scholar 

  34. Mallat S. A theory for multiresolution signal decomposition : the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11(7):674–93.

    Article  Google Scholar 

  35. Mallat S, Peyrè G. Bandelet image approximation and compression. SIAM Multiscale Model Simul. 2005;4(3):992–1039.

    Article  Google Scholar 

  36. Mallat S, Peyrè G. Orthogonal bandelet bases for geometric image approximation. Commun Pure Appl Math. 2006;61(9):1173–212.

    Google Scholar 

  37. Marr D, Poggio T. A computational theory of human stereo vision. Proc Royal Soc Lond Ser B Biol Sci. 1979;204(1156):301–28.

    Article  CAS  Google Scholar 

  38. McLoughlin NP, Grossberg S. Cortical computation of stereo disparity. Vis Res. 1998;38(1):91–9.

    Article  PubMed  CAS  Google Scholar 

  39. Nakayama K, Shimojo S. Da vinci stereopsis: depth and subjective occluding contours from unpaired image points. Neural Netw. 1990;30:1811–25.

    CAS  Google Scholar 

  40. Nasrabadi MN, Clifford SP, Liu Y. Integration of stereo vision and optical flow by using an energy-minimization approach. J Opt Soc Am. 1989;6(6):900–7.

    Article  Google Scholar 

  41. Ohzawa I, DeAngelis G, Freeman R. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science. 1990;249:1037–41.

    Article  PubMed  CAS  Google Scholar 

  42. Ohzawa I, Freeman R. The binocular organization of complex cells in the cat’s visual cortex. J Neurophysiol. 1986;56: 243–59.

    PubMed  CAS  Google Scholar 

  43. Ohzawa I, Freeman R. The binocular organization of simple cells in the cat’s visual cortex. J Neurophysiol. 1986;56: 221–42.

    PubMed  CAS  Google Scholar 

  44. Palmer L, Davis T. Receptive-field structure in cat striate cortex. Vis Res. 1981;46:260–76.

    Google Scholar 

  45. Pollen D, Ronner S. Phase relationships between adjacent simple cells in the visual cortex. Science. 1981;212:1409–11.

    Google Scholar 

  46. Rock I. La perception. Brussels: De Boeck; 2001.

  47. Schanda J. Colorimetry: understanding the CIE system. Hoboken, NJ: Wiley; 2007.

    Book  Google Scholar 

  48. Selesnick IW, Baraniuk RG, Kingsbury NG. The dual-tree complex wavelet transform. IEEE signal processing magazine; 2005. pp. 123–51.

  49. Shimojo S, Nakayama K. Real world occlusion constraints and binocular disparity. Vis Res. 1990;30(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  50. Watanabe O, Fukushima K. Stereo algorithm that extracts a depth cue from interocularly unpaired points. Neural Netw (1999);12:569–78.

    Article  PubMed  Google Scholar 

  51. Yasui S. On the square root intensity coding at the level of cone photoreceptors. Vis Res. 1992);32(1):199–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Chaker Larabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensalma, R., Larabi, MC. Binocular Energy Estimation Based on Properties of the Human Visual System. Cogn Comput 5, 589–609 (2013). https://doi.org/10.1007/s12559-012-9187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9187-7

Keywords

Navigation