Skip to main content
Log in

On the Way to Large-Scale and High-Resolution Brain-Chip Interfacing

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rutten WL. Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng. 2002;4:407–52.

    Article  PubMed  CAS  Google Scholar 

  2. Fromherz P. Neuroelectronic interfacing: semiconductor chips with ion channels, nerve cells, and brain. In: Waser R, editor. Nanoelectronics and information technology. Berlin: Wiley-VCH; 2003. p. 781–810.

    Google Scholar 

  3. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE. 2004;92:76–97.

    Article  CAS  Google Scholar 

  4. Lebedev MA, Nicolelis MA. Brain-machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):537–46.

    Article  Google Scholar 

  5. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–71.

    Article  PubMed  CAS  Google Scholar 

  6. Vassanelli S, Fromherz P. Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J Neurosci. 1999;19(16):6767–73.

    PubMed  CAS  Google Scholar 

  7. Vassanelli S, Fromherz P. Transistor records of excitable neurons from rat brain. Appl Phys A. 1998;66:459–63.

    Article  CAS  Google Scholar 

  8. Hai A, Shappir J, Spira ME. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophysiol. 2010;104:559–68.

    Article  PubMed  CAS  Google Scholar 

  9. Lambacher A, Jenkner M, Merz M, Eversmann B, Kaul RA, Hofmann F, Thewes R, Fromherz P. Electrical imaging of neuronal activity by multi-transistor-array (MTA) recording at 7.8 μm resolution. Appl Phys A. 2004;79(7):1607–11.

    Article  CAS  Google Scholar 

  10. Hutzler M, Lambacher A, Eversmann B, Jenkner M, Thewes R, Fromherz P. High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol. 2006;96:1638–45.

    Article  PubMed  CAS  Google Scholar 

  11. Girardi S, Maschietto M, Zeitler R, Mahmud M, Vassanelli S. High resolution cortical imaging using electrolyte-(metal)-oxide-semiconductor field effect transistors. In: Proceedings of the 5th international IEEE EMBS conference on neural engineering (IEEE EMBS-NER2011). Cancun, Mexico, 2010. p. 269–72.

  12. http://www.nmi.de/meameeting2010/.

  13. Berdondini L, Chiappalone M, van derWal PD, Imfeld K, de Rooij NF, Koudelka-Hep M. A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected subpopulations of neurons. Sens Actuat B: Chem. 2006;114:530–41.

    Article  Google Scholar 

  14. Berdondini L, Massobrio P, Chiappalone M, Tedesco M, Imfeld K, Maccione A, Gandolfo M, Koudelka-Hep M, Martinoia S. Extracellular recordings from high density microelectrode arrays coupled to dissociated cortical neuronal cultures. J Neurosci Meth. 2009;177:386–96.

    Article  CAS  Google Scholar 

  15. Potter SM, Wagenaar DA, DeMarse TB. Closing the loop: stimulation feedback systems for embodied MEA cultures. In: Taketani M, Baudry M, editors. Advances in network electrophysiology using multi-electrodes-arrays. New York: Springer. 2006. p. 215–42.

    Google Scholar 

  16. Fromherz P. Joining Ionics and electronics: semiconductor chips with ion channels, nerve cells, and brain tissue. In: Tech. Dig. ISSCC. 2005. vol. 1, p. 76–7.

  17. Stangl C, Fromherz P. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur J Neurosci. 2008;27:958–64.

    Article  PubMed  Google Scholar 

  18. Imfeld K, Neukom S, Maccione A, Bornat Y, Martinoia S, Farine PA, Koudelka-Hep M, Berdondini L. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans Biomed Eng. 2008;55(8):2064–72.

    Article  PubMed  Google Scholar 

  19. Frey U, Sedivy J, Heer F, Pedron R, Ballini M, Mueller J, Bakkum D, Hafizovic S, Faraci FD, Greve F, Kirstein KU, Hierlemann A. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J Solid-State Circuits. 2010;45(2):467–82.

    Article  Google Scholar 

  20. Eversmann B, Jenkner M, Hofmann F, Paulus C, Brederlow R, Holzapfl B, Fromherz P, Merz M, Brenner M, Schreiter M, Gabl R, Plehnert K, Steinhauser M, Eckstein G, Schmitt-Landsiedel D, Thewes R. A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid-State Circuits. 2003;38(12):2306–17.

    Article  Google Scholar 

  21. Eversmann B, Lambacher A, Gerling G, Kunze A. A neural tissue interfacing chip for in vitro applications with 32 k recording/stimulation channels on an active area of 2.6 mm2. In: Proceedings of the ESSCIRC. 2011 (in press).

  22. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992;20:423–37.

    Article  PubMed  CAS  Google Scholar 

  23. Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):151–5.

    Article  PubMed  Google Scholar 

  24. Lee J, Rhew HG, Kipke DR, Flynn MP. A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J Solid-State Circuits. 2010;45(9):1935–45.

    Article  Google Scholar 

  25. Azin M, Guggenmos DJ, Barbay S, Nudo RJ, Mohseni P. A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J Solid-State Circuits. 2011;46(4):731–45.

    Article  Google Scholar 

  26. Venkatraman S, Hendricks J, King ZA, Sereno AJ, Richardson-Burns S, Martin D, Carmena JM. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans Neural Syst Rehabil Eng. 2011;19(3):307–16.

    Article  PubMed  Google Scholar 

  27. Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–51.

    Article  PubMed  CAS  Google Scholar 

  28. Prochazka A, Mushahwar VK, McCreery DB. Neuralprostheses. J Physiol. 2001;533(Pt1):99–109.

    Article  PubMed  CAS  Google Scholar 

  29. Kwon KY, Eldawlatly S, Oweiss KG. NeuroQuest: a comprehensive tool for large scale neural data processing and analysis. In: Proceedings of the 4th international IEEE EMBS conference on neural engineering. 2009. p. 622–25.

  30. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004;16(8):1661–87.

    Article  PubMed  Google Scholar 

  31. Bokil HS, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Methods. 2010;192:146–51.

    Article  PubMed  Google Scholar 

  32. Bonomini MP, Ferrandez JM, Bolea JA, Fernandez E. DATA-MEAns: an open source tool for the classification and management of neural ensemble recordings. J Neurosci Methods. 2005;148:137–46.

    Article  PubMed  Google Scholar 

  33. Cui J, Xu L, Bressler SL, Ding M, Liang H. BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw. 2008;21(8):1094–104.

    Article  PubMed  Google Scholar 

  34. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.

    Article  PubMed  Google Scholar 

  35. Egert U, Knott TH, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M. MEA–tools: an open source toolbox for the analysis of multi-electrode data with Matlab. J Neurosci Methods. 2002;117(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  36. Goldberg D, Victor J, Gardner E, Gardner D. Spike train analysis toolkit: enabling wider application of information–theoretic techniques to neurophysiology. Neuroinformatics. 2009;7(3):165–78.

    Article  PubMed  Google Scholar 

  37. Gunay C, Edgerton J, Li S, Sangrey T, Prinz A, Jaeger D. Database analysis of simulated and recorded electrophysiological datasets with PANDORAs toolbox. Neuroinformatics. 2009;7(2):93–111.

    Article  PubMed  Google Scholar 

  38. Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods. 2006;155:207–16.

    Article  PubMed  Google Scholar 

  39. Herz AVM, Meier R, Nawrot MP, Schiegel W, Zito T. G-Node: an integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. Neural Netw. 2008;21(8):1070–5.

    Article  PubMed  Google Scholar 

  40. Huang Y, Li X, Li Y, Xu Q, Lu Q, Liu Q. An integrative analysis platform for multiple neural spike train data. J Neurosci Methods. 2008;172(2):303–11.

    Article  PubMed  Google Scholar 

  41. Magri C, Whittingstall K, Singh V, Logothetis N, Panzeri S. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci. 2009;10(1):81.

    Article  PubMed  Google Scholar 

  42. Morup M, Hansen LK, Arnfred SM. ERPWAVELAB: a toolbox for multi–channel analysis of time–frequency transformed event related potentials. J Neurosci Methods. 2007;161(2):361–8.

    Article  PubMed  Google Scholar 

  43. Novellino A, Chiappalone M, Maccione A, Martinoia S. Neural signal manager: a collection of classical and innovative tools for multi-channel spike train analysis. Int J Adapt Control Signal Process. 2009;23(11):999–1013.

    Article  Google Scholar 

  44. Smith LS, Mtetwa N. A tool for synthesizing spike trains with realistic interference. J Neurosci Methods. 2007;159:170–80.

    Article  PubMed  Google Scholar 

  45. Vargas-Irwin C, Donoghue JP. Automated spike sorting using density grid contour clustering and subtractive waveform decomposition. J Neurosci Methods. 2007;164:1–18.

    Article  PubMed  Google Scholar 

  46. Vato A, Bonzano L, Chiappalone M, Cicero S, Morabito F, Novellino A, Stillo G. Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing. 2004;58–60:1153–61.

    Article  Google Scholar 

  47. Versace M, Ames H, Lveill J, Fortenberry B, Gorchetchnikov A. KInNeSS: a modular framework for computational neuroscience. Neuroinformatics. 2008;6(4):291–309.

    Article  PubMed  Google Scholar 

  48. Wagenaar D, DeMarse TB, Potter SM. MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. In: Proceedings of the IEEE EMBS conference on neural engineering. 2005. p. v–viii.

  49. Seidl K, Torfs T, De Mazière PA, Van Dijck G, Csercsa R, Dombovari B, Nurcahyo Y, Ramirez H, Van Hulle MM, Orban GA, Paul O, Ulbert I, Neves H, Ruther P. Control and data acquisition software for high-density CMOS-based microprobe arrays implementing electronic depth control. Biomed Tech (Berl). 2010;55(3):183–91.

    Article  Google Scholar 

  50. Torfs T, Aarts A, Erismis MA, Aslam J, Yazicioglu RF, Puers R, Van Hoof C, Neves H, Ulbert I, Dombovari B, Fiath R, Kerekes BP, Seidl K, Herwik S, Ruther P. Two-dimensional multi-channel neural probes with electronic depth control. In: Proceedings of the biomedical circuits and systems conference (BioCAS). Paphos, Cyprus, 2010. p. 198–201.

  51. Lidierth M. sigTOOL: a Matlab–based environment for sharing laboratory developed software to analyze biological signals. J Neurosci Methods. 2009;178:188–96.

    Article  PubMed  Google Scholar 

  52. Meier R, Egert U, Aertsen A, Nawrot MP. FIND—a unified framework for neural data analysis. Neural Netw. 2008;21(8):1085–93.

    Article  PubMed  Google Scholar 

  53. Mahmud M, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. SigMate: a Matlab–based neuronal signal processing tool. In: Proceedings of the 32nd annual international conference of IEEE EMBS (EMBC2010). Buenos Aires, Argentina, 2010. p. 1352–55.

  54. Mahmud M, Bertoldo A, Girardi S, Maschietto M, Pasqualotto E, Vassanelli S. SigMate: a comprehensive software package for extracellular neuronal signal processing and analysis. In: Proceedings of the 5th international conference on neural engineering (IEEE EMBS-NER2011). Cancun, Maxico, 2011. p. 88–91.

  55. Weis R, Müller B, Fromherz P. Neuron adhesion on a silicon chip probed by an array of field-effect transistors. Phys Rev Lett. 1996;76(2):327–30.

    Article  PubMed  CAS  Google Scholar 

  56. Schmidtner M, Fromherz P. Functional Na+ channels in cell adhesion probed by transistor recording. Biophys J. 2006;90:183–9.

    Article  PubMed  CAS  Google Scholar 

  57. Lambacher A, Vitzthum V, Zeitler R, Eickenscheidt M, Eversmann B, Thewes R, Fromherz P. Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl Phys A. 2011;102(1):1–11.

    Article  CAS  Google Scholar 

  58. Felderer F, Fromherz P. Transistor needle chip for recording in brain tissue. Appl Phys A. 2011;104:1–6.

    Article  CAS  Google Scholar 

  59. Swanson LW. Brain maps: structure of the rat brain. 3rd ed. London: Academic Press; 2003.

    Google Scholar 

  60. Mahmud M, Girardi S, Maschietto M, Pasqualotto E, Vassanelli S. An automated method to determine angular preferentiality using LFPs recorded from rat barrel cortex by brain-chip interface under mechanical whisker stimulation. In: Proceedings of the 33rd annual international conference of IEEE EMBS (EMBC2011). Boston, USA, 2011. p. 2307–10.

  61. Maschietto M, Girardi S, Felderer F, Pasqualotto E, Fromherz P, Vassanelli S. Local field potentials recording from the rat brain cortex with transistor needle chips (unpublished).

  62. Hofstötter C, Gil M, Eng K, Indiveri G, Mintz M, Kramer J, Verschure PFMJ. The cerebellum chip: an analog VLSI implementation of a cerebellar model of classical conditioning. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems. Cambridge: MIT Press; 2005. p. 577–84.

    Google Scholar 

  63. Hofstötter C, Mintz M, Verschure PFMJ. The cerebellum in action: a simulation and robotics study. Eur J Neurosci. 2002;16:1361–76.

    Article  PubMed  Google Scholar 

  64. Vershure P, Mintz M. A real-time model of the cerebellar circuitry underlying classical conditioning: a combined simulation and robotics study. Neurocomputing. 2001;38–40:1019–24.

    Article  Google Scholar 

  65. Liu SC, Delbruck T. Neuromorphic sensory systems. Curr Opin Neurobiol. 2010;20(2):288–95.

    Article  PubMed  Google Scholar 

  66. Wen B, Boahen K. A silicon cochlea with active coupling. IEEE Trans Biomed Circuits Syst. 2009;3(6):444–55.

    Article  Google Scholar 

  67. Heming EA, Choo R, Davies JN, Kiss ZHT. Designing a thalamic somatosensory neural prosthesis: consistency and persistence of percepts evoked by electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2011;. doi:10.1109/TNSRE.2011.2152858.

    PubMed  Google Scholar 

  68. Vassanelli S, Bandiera L, Borgo M, Cellere G, Santoni L, Bersani C, Salamon M, Zaccolo M, Lorenzelli L, Girardi S, Maschietto M, Dal Maschio M, Paccagnella A. Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. New Biotechnol. 2008;25(1):55–67.

    Article  CAS  Google Scholar 

  69. Wang M, Orwar O, Olofsson J, Weber SG. Single-cell electroporation. Anal Bioanal Chem. 2010;397:3235–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of the European Commission funded CyberRat project under the Seventh FrameworkProgramme (ICT-2007.8.3 Bio-ICT convergence, 216528, CyberRat). The authors express their gratitude to Prof. Peter Fromherz for providing us with the chips and his invaluable suggestions during the experiments & Prof. Roland Thewes for fruitful discussions and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vassanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassanelli, S., Mahmud, M., Girardi, S. et al. On the Way to Large-Scale and High-Resolution Brain-Chip Interfacing. Cogn Comput 4, 71–81 (2012). https://doi.org/10.1007/s12559-011-9121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-011-9121-4

Keywords

Navigation