Skip to main content
Log in

Mutuality in Discrete and Compositional Information: Perspectives for Synthetic Genetic Codes

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The self-referential model for the formation of the genetic code proposes that protein synthesis was initiated by proto-tRNA dimers. Proto-tRNAs in the dimers recognize each other through anticodon pairing. The proteins produced recognize the producing dimers through binding, forming (proto)ribonucleoprotein (RNP) aggregates. Their functions were stimulated and specificities evolved through cycling. Such cycles would be among the first in the construction of living networks, and examples of processes that might be relevant for modeling cognitive networks. The protein synthesis process is considered a main drive for the living system′s specific attributes of anabolic and evolutionary semi-autonomy. Structures of the anticodon dimer networks are presented. Biological data point to the encoding having been installed on the modules of dimers formed by nonself-complementary triplets. Aminoacyl-tRNA adhesion interactions integrated the dimer networks into RNP networks. Specific questions are proposed for simulation and modeling that should help in designing experimental procedures aiming at testing the model and the development of synthetic genetic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

 Amino acids :

Are designated by three-letter abbreviations; groups of amino acids may be indicated by one-letter abbreviations

Anticodon:

The code triplet of transfer RNA, the default notation of code triplets

aRS:

Synthetase, aminoacyl-tRNA synthetase

Codon:

The code triplet of messenger RNA

iMet:

Initiator

MaRS:

Multi-aRS complex

mRNA:

Messenger RNA

pDiN:

The principal dinucleotide of code triplets, excluding the wobble position

R:

Purines

RF:

Release factors

RNP:

Ribonucleoprotein

rRNA:

Ribosomal RNA

SRM:

Self-referential model

Transferase:

Peptidyl-transferase

tRNA:

Transfer RNA

-, w, N (any base):

The wobble position of code triplets, anticodon 5′ or codon 3′

X:

Stop or termination

Y:

Pyrimidines

References

  1. Amirnovin R. An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol. 1997;44:473–6.

    Article  PubMed  CAS  Google Scholar 

  2. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  PubMed  Google Scholar 

  3. Baranov PV, Gurvich OL, Hammer AW, Gesteland RF, Atkins JF. Recode 2003. Nucleic Acids Res. 2003;31:87–9.

    Article  PubMed  CAS  Google Scholar 

  4. Batten D, Salthe S, Boschetti F. Visions of evolution: self-organization proposes what natural selection disposes. Biol Theory. 2008;3:17–29.

    Article  Google Scholar 

  5. Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 2001;29:4767–82.

    Article  PubMed  CAS  Google Scholar 

  6. Bergson H. Creative Evolution. New York: Henry Holt; 1911.

    Google Scholar 

  7. Berthonneau E, Mirande M. A gene fusion event in the evolution of aminoacyl-tRNA synthetases. FEBS Lett. 2000;470:300–4.

    Article  PubMed  CAS  Google Scholar 

  8. Beuning PJ, Musier-Forsyth K. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers. 1999;52:1–28.

    Article  PubMed  CAS  Google Scholar 

  9. Bloch DP, McArthur B, Guimarães RC, Smith J, Staves MP. tRNA-rRNA sequence matches from inter- and intraspecies comparisons suggest common origins for the two RNAs. Braz J Med Biol Res. 1989;22:931–44.

    PubMed  CAS  Google Scholar 

  10. Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J. tRNA-rRNA sequence homologies: a model for the generation of a common ancestral molecule and prospects for its reconstruction. Orig Life Evol Biosph. 1984;14:571–8.

    Article  CAS  Google Scholar 

  11. Cleaves HJ, Aubrey AD, Bada JL. An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig Life Orig Biosph. 2009;39:109–26.

    Article  CAS  Google Scholar 

  12. Cody GD. Geochemical connections to primitive metabolism. Elements. 2005;1:139–43.

    Article  CAS  Google Scholar 

  13. Copley SD, Smith E, Morowitz HJ. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci USA. 2005;102:4442–7.

    Article  PubMed  CAS  Google Scholar 

  14. Csermely P. Weak Links–Stabilizers of Complex Systems from Proteins to Social Networks. Berlin, Germany: Springer; 2006.

    Google Scholar 

  15. Davis BK. Comments on the search for the source of the genetic code. In: Messenger RNA Research Perspectives. Ed. Takeyama T. New York USA: Nova Science; 2008. pp 35–79.

  16. Di Giulio M. The origin of the genetic code: theories and their relationships, a review. Biosystems. 2005;80:175–84.

    Article  PubMed  CAS  Google Scholar 

  17. Di Giulio M. An extension of the coevolution theory of the origin of the genetic code. Biol Direct. 2008;3:37.

    Article  PubMed  Google Scholar 

  18. Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ. Transcription profiling of the stringent response in Escherichia coli. J Bacteriol. 2008;190:1084–96.

    Article  PubMed  CAS  Google Scholar 

  19. Eigen M, Schuster P. The hypercycle: a principle of natural self-organization. Berlin: Springer; 1979.

    Google Scholar 

  20. Eigen M, Winkler-Oswatitsch R. Transfer RNA, an early gene? Naturwissenschaften. 1981;68:282–92.

    Article  PubMed  CAS  Google Scholar 

  21. Ertem G. Montmorillonite, oligonucleotides, RNA and origin of life. Orig Life Evol Biosph. 2004;34:549–70.

    Article  PubMed  CAS  Google Scholar 

  22. Ertem G, O’Brien AMS, Ertem MC, Rogoff DA, Dworkin JP, Johnston MV, Hazen RM. Abiotic formation of RNA-like oligomers by montmorillonite catalysis: part II. Int J Astrobiol. 2008;7:1–7.

    Article  CAS  Google Scholar 

  23. Eschenmoser A. Kinetic control. In: Stano P, Luisi PL, editors. Basic questions about the origins of life. Orig Life Evol Biosph 2007;37:309–314.

    Google Scholar 

  24. Faria LCB, Rocha ASL, Kleinschmidt JH, Palazzo R Jr, Silva-Filho MC. DNA sequences generated by BCH over GF(4). Electron Lett. 2010;46:202–3.

    Article  CAS  Google Scholar 

  25. Farias ST, Bonato MCM. Preferred amino acids and thermostability. Genet Mol Res. 2003;2:383–93.

    PubMed  CAS  Google Scholar 

  26. Farias ST, Guimarães RC. Aminoacyl-tRNA synthetase classes and groups in prokaryotes. J Theor Biol. 2007;250:221–9.

    Article  PubMed  Google Scholar 

  27. Farias ST, Moreira CHC, Guimarães RC. Structure of the genetic code suggested by the hydropathy correlation between anticodons and amino acid residues. Orig Life Evol Biosph. 2007;37:83–103.

    Article  PubMed  Google Scholar 

  28. Fishkis M. Steps towards the formation of a protocell: the possible role of short peptides. Orig Life Evol Biosph. 2007;37:537–53.

    Article  PubMed  CAS  Google Scholar 

  29. Fournier GP, Gogarten JP. Rooting the ribosomal tree of life. Mol Biol Evol. 2010;27:1792–801.

    Article  PubMed  CAS  Google Scholar 

  30. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA. 1986;83:9373–7.

    Article  PubMed  CAS  Google Scholar 

  31. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–6.

    Article  PubMed  CAS  Google Scholar 

  32. Golinelli-Cohen MP, Mirande M. Arc1p is required for cytoplasmic confinement of synthetases and tRNA. Mol Cell Biochem. 2007;300:47–59.

    Article  PubMed  CAS  Google Scholar 

  33. Grosjean H, Crécy-Lagard V, Marck C. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Letters 2009. doi:10.1016/j.febslet.2009.11.052.

  34. Grosjean H, Houssier C. Codon recognition: evaluation of the effects of modified bases in the anticodon loop of tRNA using the temperature jump-relaxation method. In: Gehrke CW, Kuo KCT, editors. Chromatography and modification of nucleotides. Amsterdam: Elsevier; 1990. p. A255–A295.

    Google Scholar 

  35. Gruic-Sovulj I, Landeka I, Söll D, Weygand-Durasevic I. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. Eur J Biochem. 2002;269:5271–9.

    Article  PubMed  CAS  Google Scholar 

  36. Guimarães RC. Metabolic basis for the self-referential genetic code. Orig Life Evol Biosph. 2011;41:357–71.

    Article  PubMed  Google Scholar 

  37. Guimarães RC, Moreira CHC. Genetic code–a self-referential and functional model. In: Pályi G, Zucchi C, Caglioti L, editors. Progress in biological chirality. Oxford: Elsevier; 2004. p. 83–118.

    Chapter  Google Scholar 

  38. Guimarães RC, Moreira CHC, Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci. 2008;127:249–70.

    Article  PubMed  Google Scholar 

  39. Guimarães RC, Moreira CHC, Farias ST. Self-referential formation of the genetic system. In: Barbieri M, editor. The codes of life: the rules of macroevolution. Dordrecht, NL: Springer; 2008. p. 68–110.

    Google Scholar 

  40. Guzman MI, Martin ST. Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology. 2009;9:833–42.

    Article  PubMed  CAS  Google Scholar 

  41. Hartman H, Smith TF. GTPases and the origin of the ribosome. Biol Direct. 2010;5:36.

    Article  PubMed  Google Scholar 

  42. Hazen RM, Sverjensky DA. Mineral surfaces, geochemical complexities, and the origin of life. Cold Spring Harb Perspect Biol. 2010;2:a002162.

    Article  PubMed  Google Scholar 

  43. Higgs PG. A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol Direct. 2009;4:16.

    Article  PubMed  Google Scholar 

  44. Higgs PG, Pudritz RE. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009;9:483–90.

    Article  PubMed  CAS  Google Scholar 

  45. Hornos JEM, Braggion L, Mazini M, Forger M. Symmetry preservation in the evolution of the genetic code. IUBMB Life. 2004;56:125–30.

    Article  PubMed  CAS  Google Scholar 

  46. Illangasekare M, Yarus M. A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. RNA. 1999;5:1482–9.

    Article  PubMed  CAS  Google Scholar 

  47. Jones H, Cockell CS, Goodson C, Price N, Simpson A, Thomas B. Experiments on mixotrophic protists and catastrophic darkness. Astrobiology. 2009;9:563–71.

    Article  PubMed  CAS  Google Scholar 

  48. Jose MV, Morgado ER, Govezensky T. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models. Bulletin of Mathematical Biology 2010. doi:10.1007/s11538-010-9571-y.

  49. Jurka J, Smith TF. β-turn-driven early evolution: the genetic code and biosynthetic pathways. J Mol Evol. 1987;25:15–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kauffman SA. The Origins of Order–Self-organization and Selection in Evolution. New York USA: Oxford University Press; 1993.

    Google Scholar 

  51. Kisselev LL. Class I translation termination factors are functional analogs of aminoacyl-tRNAs. Mol Biol. 2003;37:791–802.

    Article  CAS  Google Scholar 

  52. Knight RD, Freeland SJ, Landweber LF. Rewiring the keyboard: evolvability of the genetic code. NatRev Genet. 2001;2:49–58.

    CAS  Google Scholar 

  53. Koonin EV, Novozhilov AS. Origin and evolution of the genetic code: the universal enigma. IUBMB. 2009;61:99–111.

    Article  CAS  Google Scholar 

  54. Lambert JF. Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph. 2008;38:211–42.

    Article  PubMed  CAS  Google Scholar 

  55. Li WH. Molecular evolution. Sunderland USA: Sinauer; 1997.

    Google Scholar 

  56. Maizels N, Weiner AM. The genomic tag hypothesis: what molecular fossils tell us about the evolution of tRNA. In: Gesteland RF, Cech TR, Atkins JF, editors. The RNA World. New York USA: Cold Spring Harbor Laboratory Press; 1999. p. 79–111.

    Google Scholar 

  57. Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transition from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Transact R Soc Lond B. 2003;358:59–85.

    Article  CAS  Google Scholar 

  58. Maury CPJ. Self-propagating beta-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig Life Evol Biosph. 2009;39:141–50.

    Article  PubMed  CAS  Google Scholar 

  59. Mathews DH, Sabina J, Zucker M, Turner M. Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Evol. 1999;288:911–40.

    CAS  Google Scholar 

  60. Mayr E. What Makes Biology Unique? New York USA: Cambridge University Press; 2004.

  61. Miller DL, Yamane T, Hopfield JJ. Effect of tRNA dimer formation on polyphenylalanine biosynthesis. Biochemistry. 1981;20:5457–61.

    Article  PubMed  CAS  Google Scholar 

  62. Milo R, Shen-Orr S, Itzkowitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7.

    Article  PubMed  CAS  Google Scholar 

  63. Nielsen PE. Peptide nucleic acids and the origin of homochirality of life. Orig Life Evol Biosph. 2007;37:323–8.

    Article  PubMed  CAS  Google Scholar 

  64. Noller HF. The driving force for molecular evolution of translation. RNA. 2004;10:1833–7.

    Article  PubMed  CAS  Google Scholar 

  65. Novozhilov AS, Koonin EV. Exceptional error minimization in putative primordial genetic codes. Biology Direct. 2009;4:44.

    Article  PubMed  Google Scholar 

  66. Ogle JM, Brodersen DE, Clemens WM Jr, Tarry MJ, Carter AP, Ramakrishnan CV. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;293:897–902.

    Article  Google Scholar 

  67. Ogle JM, Carter AP, Ramakrishnan CV. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci. 2003;28:259–66.

    Article  PubMed  CAS  Google Scholar 

  68. Osawa S. Evolution of the genetic code. New York, USA: Oxford University Press; 1995.

    Google Scholar 

  69. Petrusz SC, Turvey MT. On the distinctive features of ecological laws. Ecol Psychol. 2010;22:44–68.

    Article  Google Scholar 

  70. Plutynski A. Explaining how and why: developmental and evolutionary explanations of dominance. Biol Philos. 2008;23:363–81.

    Article  Google Scholar 

  71. Polycarpo C, Ambrogelly A, Berube A, Winbush SM, McCloskey JA, Grain PF, Wood JL, Söll D. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA. 2004;101:12450–4.

    Article  PubMed  CAS  Google Scholar 

  72. Poole AM, Jeffares DC, Penny D. The path from the RNA world. J Mol Evol. 1998;46:1–17.

    Article  PubMed  CAS  Google Scholar 

  73. Praetorius-Ibba M, Hausmann CD, Paras M, Rogers TE, Ibba M. Functional association between three archaeal aminoacyl-tRNA synthetases. J Biol Chem. 2007;282:3680–7.

    Article  PubMed  CAS  Google Scholar 

  74. Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–42.

    Article  PubMed  CAS  Google Scholar 

  75. Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272:32573–9.

    Article  PubMed  CAS  Google Scholar 

  76. Rajamani S, Vlasov A, Benner S, Coombs A, Olasagasti F, Deamer D. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph. 2008;38:57–74.

    Article  PubMed  CAS  Google Scholar 

  77. Rodin S, Ohno S, Rodin A. Transfer RNAs with complementary anticodons: Could they reflect early evolution of discriminative genetic code adaptors? Proc Natl Acad Sci USA. 1993;90:4723–7.

    Article  PubMed  CAS  Google Scholar 

  78. Rodin S, Rodin A, Ohno S. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA. 1996;93:4537–42.

    Article  PubMed  CAS  Google Scholar 

  79. Ronneberg TA, Landweber LF, Freeland SJ. Testing a biosynthetic theory of the genetic code: fact or artifact? Proc Natl Acad Sci USA. 2000;97:13690–5.

    Article  PubMed  CAS  Google Scholar 

  80. Rosslenbroich B. The theory of increasing autonomy in evolution: a proposal for understanding macroevolutionary innovations. Biol Philos. 2009;24:623–44.

    Article  Google Scholar 

  81. Santoso S, Hwang W, Hartman H, Zhang SG. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett. 2002;2:687–91.

    Article  CAS  Google Scholar 

  82. Schwartz AW. Arsenate DNA: Evidence for a vital force? Orig Life Evol Biosph 2011;41. doi:10.1007/s11084-010-9231-0.

  83. Seligmann H, Krishnan NM, Rao BJ. Possible multiple origins of replication in primate mitochondria: alternative role of tRNA sequences. J Theor Biol. 2006;291:321–32.

    Article  Google Scholar 

  84. Serrano A, Perez-Castineira JR, Baltscheffsky M, Baltscheffsky H. H+-PPases: yesterday, today and tomorrow. IUBMB Life. 2007;59:76–83.

    Article  PubMed  CAS  Google Scholar 

  85. Sobolevsky Y, Trifonov EN. Protein modules conserved since LUCA. J Mol Evol. 2006;63:622–34.

    Article  PubMed  CAS  Google Scholar 

  86. Szostak JW. Systems chemistry on early earth. Nature. 2009;459:171–2.

    Article  PubMed  CAS  Google Scholar 

  87. Tafforeau M, Verdus MC, Norris V, Ripoll C, Thellier M. Memory processes in the response of plants to environmental signals. Plant Signal Behav. 2006;1:9–14.

    Article  PubMed  CAS  Google Scholar 

  88. Tamura K. Origin of amino acid homochirality: relationships with the RNA world and origin of tRNA aminoacylation. BioSystems. 2008;92:91–8.

    Article  PubMed  CAS  Google Scholar 

  89. Tamura K, Schimmel PR. Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression. Proc Natl Acad Sci USA. 2006;103:13750–2.

    Article  PubMed  CAS  Google Scholar 

  90. Tenera M. Life began when evolution began: a lipidic vesicle-based scenario. Orig Life Evol Biosph. 2009;39:559–64.

    Article  Google Scholar 

  91. Trewavas A. A brief history of systems biology. Plant Cell. 2006;18:2420–30.

    Article  PubMed  CAS  Google Scholar 

  92. Trifonov EN. Glycine clock: eubacteria first, archaea next, protoctista, fungi, planta and animalia at last. Gene Ther Mol Biol. 1999;4:313–22.

    Google Scholar 

  93. Trifonov EN. The triplet code from first principles. J Biomol Struct Dyn. 2004;22:1–11.

    PubMed  CAS  Google Scholar 

  94. Varschavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA. 1996;93:12142–9.

    Article  Google Scholar 

  95. Vetsigian K, Woese C, Goldenfeld N. Collective evolution and the genetic code. Proc Natl Acad Sci USA. 2006;103:10696–701.

    Article  PubMed  CAS  Google Scholar 

  96. Wong JTF. A co-evolution theory of the genetic code. Proc Natl Acad Sci USA. 1975;72:1909–12.

    Article  PubMed  CAS  Google Scholar 

  97. Wong JTF. Coevolution theory of the genetic code at age thirty. BioEssays. 2005;27:416–25.

    Article  PubMed  CAS  Google Scholar 

  98. Wood AP, Aurikko JP, Kelly DP. A challenge for the 21st century molecular biology and biochemistry: what are the causes of obligate autotropohy and methanotrophy? FEMS Microbiol Rev. 2004;28:335–52.

    Article  PubMed  CAS  Google Scholar 

  99. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998;37:14719–35.

    Article  PubMed  CAS  Google Scholar 

  100. Yamane T, Miller DL, Hopfield JJ. Interaction of elongation factor Tu with the aminoacyl-tRNA dimer Phe-tRNA:Glu-tRNA. Biochemistry. 1981;20:449–52.

    Article  PubMed  CAS  Google Scholar 

  101. Yarus M, Widmann JJ, Knight R. RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol. 2009;69:406–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The continued collaboration of the colleagues in the Self-organization Group of the Center for Logics and Epistemology of UNICAMP, especially Alfredo Pereira Júnior, and of Carlos Henrique Costa Moreira and Sávio Torres de Farias are deeply appreciated, as well as the fruitful discussions with Arkadiusz Chworos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeu Cardoso Guimarães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, R.C. Mutuality in Discrete and Compositional Information: Perspectives for Synthetic Genetic Codes. Cogn Comput 4, 115–139 (2012). https://doi.org/10.1007/s12559-011-9116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-011-9116-1

Keywords

Navigation