Skip to main content
Log in

Sliding mode control design via piecewise smooth Lipschitz surfaces based on contingent cone criteria

  • Control Theory
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

In order to improve flexibility of sliding mode control (SMC) for a class of nonlinear systems, a new control design method is proposed in this paper. The sliding surface is extended to be a generic Lipschitz continuous surface instead of a smooth one, with which different characteristics of sliding motion may be realized. Due to the nonsmoothness of the sliding surface, the control design problem is discussed in the framework of Filippov’s differential inclusion, by analyzing the geometric properties of the nonsmooth surface. Discontinuous control laws are presented based on new contingent cone criteria, which steer all of the trajectories of the closed-loop system to reach the piecewise smooth sliding surface in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, “Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer-Verlag New York, 2007.

    Google Scholar 

  2. O. Makarenkov and J. Lamb, “Dynamics and bifurcations of nonsmooth systems: a survey,” Physica D: Nonlinear Phenomena, vol. 241, no. 22, pp. 1826–1844, 2012.

    Article  MathSciNet  Google Scholar 

  3. R. Leine and D. Campen, “Bifurcation phenomena in non-smooth dynamical systems,” European Journal of Mechanics A-Solids, vol. 25, no. 4, pp. 595–616, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. J. Hogan, “Nonsmooth systems: synchronization, sliding and other open problems,” Proc. of International Workshop on Resonance Oscillations and Stability of Nonsmooth Systems, Imperial College London UK, 2009.

    Google Scholar 

  5. J. Cortés, “Discontinuous dynamical systems, a tutorial on solutions, nonsmooth analysis, and stability,” IEEE Control Systems Magazine, vol. 28, no. 3, pp. 36–73, 2008.

    Article  MathSciNet  Google Scholar 

  6. S.-I. Han and J.-M. Lee, “Backstepping sliding mode control with FWNN for strict output feedback non-smooth nonlinear dynamic system,” International Journal of Control, Automation, and Systems, vol. 11, no. 2, pp. 398–409, 2013.

    Article  MathSciNet  Google Scholar 

  7. A. Jacquemard, M. A. Teixeira, and D. J. Tonon, “Stability conditions in piecewise smooth dynamical systems at a two-fold singularity,” Journal of Dynamical and Control Systems, vol. 19, no. 1, pp. 47–67, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. G. Tanner and K. J. Kyriakopoulos, “Backstepping for nonsmooth systems,” Automatica, vol. 39, no. 7, pp. 1259–1265, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Bompart, P. Apkarian, and D. Noll, “Control design in the time and frequency domain using nonsmooth techniques,” Systems and Control Letters, vol. 57, no. 3, pp. 271–282, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Liu, Y. Yao, B. Q. Yang, V. Balakrishnan, and Y. Guo, “Exponential stability analysis of planar piecewise-linear systems an integral function approach,” International Journal of Control, Automation, and Systems, vol. 10, no. 2, pp. 203–212, 2012.

    Article  Google Scholar 

  11. N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle-Yoshizawa corollaries for nonsmooth systems,” IEEE Trans. on Automatic Control, vol. 58, no. 9, pp. 2333–2338, 2013.

    Article  MathSciNet  Google Scholar 

  12. F. H. Clarke, “Nonsmooth analysis in control theory: a survey,” European Journal of Control, vol. 7, no. 3, pp. 63–78, 2001.

    Google Scholar 

  13. A. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic Publishersm Dordrecht, Netherlands, 1988.

    Book  MATH  Google Scholar 

  14. K. Zheng, T. L. Shen, and Y. Yao, “New approaching condition for sliding mode control design with a Lipschitz switching surface,” Science in China Series F: Information Sciences, vol. 52, no. 11, pp. 2032–2044, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  15. X. Huo and Y. Yao, “Control design with Lipschitz switching surfaces based on new contingent cone criteria,” International Journal of Modelling, Identification and Control, vol. 14, no. 3, pp. 205–215, 2011.

    Article  Google Scholar 

  16. X. Huo, Y. Yao, B. Q. Yang, and K. Zheng, “On-off control design of a class of linear systems via Lipschitz switching surfaces,” Proc. of 18th IFAC World Congress, Milano, pp. 10893–10898, 2011.

    Google Scholar 

  17. Y. Yao, K. Zheng, K. M. Ma, and T. L. Shen, “Sliding mode control design with a class of piecewise smooth switching surfaces,” International Journal of Modelling, Identification and Control, vol. 7, no. 3, pp. 294–304, 2009.

    Article  Google Scholar 

  18. Y. Wu, X. Yu, and Z. Man, “Terminal sliding mode control design for uncertain dynamic systems,” Systems and Control Letters, vol. 34, no. 5, pp. 281–287, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag New York, 1998.

    MATH  Google Scholar 

  21. B. Paden and S. Sastry, “A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators,” IEEE Trans. on Circuits Systems, vol. 34, no. 1, pp. 73–82, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. on Automatic Control, vol. 39, no. 9, pp. 1910–1914, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Huang and J. Q. Han, “A new synthesis method for uncertain systems-the self-stable region approach,” International Journal of Systems Science, vol. 30, no. 1, pp. 33–38, 1999.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, X., Zheng, K. & Ma, K. Sliding mode control design via piecewise smooth Lipschitz surfaces based on contingent cone criteria. Int. J. Control Autom. Syst. 12, 733–741 (2014). https://doi.org/10.1007/s12555-013-0313-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-013-0313-4

Keywords

Navigation