Skip to main content
Log in

Mesoscopic analysis of motion and conformation of cross-bridges

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The orientation of a cross-bridge is widely used as a parameter in determining the state of muscle. The conventional measurements of orientation, such as that made by wide-field fluorescence microscopy, electron paramagnetic resonance (EPR) or X-ray diffraction or scattering, report the average orientation of 1012–109 myosin cross-bridges. Under conditions where all the cross-bridges are immobile and assume the same orientation, for example in normal skeletal muscle in rigor, it is possible to determine the average orientation from such global measurements. But in actively contracting muscle, where a parameter indicating orientation fluctuates in time, the measurements of the average value provide no information about cross-bridge kinetics. To avoid problems associated with averaging information from trillions of cross-bridges, it is necessary to decrease the number of observed cross-bridges to a mesoscopic value (i.e. the value affected by fluctuations around the average). In such mesoscopic regimes, the averaging of the signal is minimal and dynamic behavior can be examined in great detail. Examples of mesoscopic analysis on skeletal and cardiac muscle are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACF:

Autocorrelation function

APD:

Avalanche photodiode

DIC:

Differential interference contrast

DV:

Detection volume

ECV:

Elliptical confocal volume

EDC:

`1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide

FCS:

Fluorescence correlation spectroscopy

FWHM:

Full width at half maximum

FLC:

Fluorescence lifetime correlation

HS:

Half sarcomere

LC1:

Myosin alkaline light chain 1

LMM:

Light meromyosin

PF:

Polarization of fluorescence

PSF:

Point spread function

QD:

Quantum dots

RCM:

Restrictive cardiac myopathy

RLC:

Regulatory light chain

S1:

Myosin subfragment-1

S2:

Myosin subfragment-2

SeTau:

SeTau-647-mono-maleimide

SeTau-LC1:

LC1-myosin alkaline light chain 1 labeled with SeTau

STED:

Stimulated emission detection

SMD:

Single molecule detection

TIRF:

Total internal reflection fluorescence

References

  • Alamo L et al (2008) Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 384(4):780–97

    Article  PubMed  CAS  Google Scholar 

  • Aronson JF, Morales MF (1969) Polarization of tryptophan fluorescence in muscle. Biochemistry 8:4517–4522

    Article  PubMed  CAS  Google Scholar 

  • Artz G, Wynne J (2000) Restrictive Cardiomyopathy. Curr Treat Options Cardiovasc Med 2(5):431–438

    Article  PubMed  Google Scholar 

  • Bagshaw CR (1982) Muscle Contraction. Chapman & Hall, London

    Book  Google Scholar 

  • Berger CL et al (1995) Fluorescence polarization from isomers of tetramethylrhodamine at SH-1 in rabbit psoas muscle fibers. Biophys J 68:78S–80S

    PubMed  CAS  Google Scholar 

  • Berger CL et al (1996) Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain. Biophys J 71:3330–3343

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J, Putnam S, Morales MF (1979) Fluctuations in polarized fluorescence: evidence that muscle cross-bridges rotate repetitively during contraction. Proc Natl Acad Sci USA 76:6345–6350

    Article  Google Scholar 

  • Borejdo J et al (1982) Cross-bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore. J Mol Biol 158:391–414

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J et al (2004) Rotation of the lever-arm of myosin in contracting skeletal muscle fiber measured by two-photon anisotropy. Biophys J 87:3912–3921

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J et al (2006a) Rotations of a few cross-bridges in muscle by confocal total internal reflection microscopy. Biochim Biophys Acta 1763:137–140

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J et al (2006b) Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope. Opt Express 14(17):7878–7888

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J et al (2006c) Application of Surface Plasmon Coupled Emission to Study of Muscle. Biophys J 91:2626–2635

    Article  PubMed  CAS  Google Scholar 

  • Bracewell R (1965) The Fourier Transform and Its Applications. McGraw-Hill, New York

    Google Scholar 

  • Bratton CB, Hopkins AL, Weinberg JW (1965) Nuclear Magnetic Resonance Studies of Living Muscle. Science 147:738–9

    Article  PubMed  CAS  Google Scholar 

  • Brown JH et al (2011) Visualizing key hinges and a potential major source of compliance in the lever arm of myosin. Proc Natl Acad Sci USA 108(1):114–9

    Article  PubMed  CAS  Google Scholar 

  • Burghardt TP, Ajtai K (1994) Following the rotational trajectory of the principal hydrodynamic frame of a protein using multiple probes. Biochemistry 33:5376–5381

    Article  PubMed  CAS  Google Scholar 

  • Burghardt TP, Ajtai K, Borejdo J (2006a) In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy. Biochemistry 45(13):4058–68

    Article  PubMed  CAS  Google Scholar 

  • Burghardt TP et al (2006b) In Situ Fluorescent Protein Imaging with Metal Film Enhanced Total Internal Reflection Microscopy. Biophys J 24:24

    Google Scholar 

  • Burghardt TP, Hipp AD, Ajtai K (2009) Around-the-objective total internal reflection fluorescence microscopy. Appl Opt 48(32):6120–31

    Article  PubMed  Google Scholar 

  • Buschmann V, Kramer B, Koberlink (2009) Quantitive FCS: Determination of confocal volume by FCS and bead scabnning with Micro Time 200. PicoQuant, Application note Quantitative FCS v. 1.1

  • Cohen I, Tirosh R, Oplatka A (1974) Active streaming in human thrombosthenin solutions. Pflugers Arch 352(1):81–5

    Article  PubMed  CAS  Google Scholar 

  • Colson BA et al (2010) Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development. J Physiol 588(Pt 6):981–93

    Article  PubMed  CAS  Google Scholar 

  • Cooke R (2011) The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. Biophys Rev 3(1):33–45

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Crowder MS, Thomas DD (1982) Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300(5894):776–778

    Article  PubMed  CAS  Google Scholar 

  • Cope FW (1969) Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J 9(3):303–19

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Padron R, Kendrick-Jones J (1987) Structural changes accompanying phosphorylation of tarantula muscle myosin filaments. J Cell Biol 105(3):1319–27

    Article  PubMed  CAS  Google Scholar 

  • Dale RE et al (1999) Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers. Biophys J 76(3):1606–18

    Article  PubMed  CAS  Google Scholar 

  • Damadian R (1976) Structured Water or Pumps? Science 193(4253):528–530

    Article  PubMed  CAS  Google Scholar 

  • Dos Remedios CG, Millikan RG, Morales MF (1972a) Polarization of tryptophan fluorescence from single striated muscle fibers. A molecular probe of contractile state. J Gen Physiol 59:103–120

    Article  PubMed  Google Scholar 

  • Dos Remedios CG, Yount RG, Morales MF (1972b) Individual states in the cycle of muscle contraction. Proc Natl Acad Sci USA 69:2542–2546

    Article  PubMed  Google Scholar 

  • Elson EL (1985) Fluorescence correlataion spectroscopy and photobleaching recovery. Annu Rev Phys Chem 36:379–406

    Article  CAS  Google Scholar 

  • Elson EL (2004) Quick tour of fluorescence correlation spectroscopy from its inception. J Biomed Opt 9(5):857–64

    Article  PubMed  CAS  Google Scholar 

  • Elson EL (2007) Introduction to FCS. Short Course on Cellular and Molecular Fluorescence. Gryczynski Z (ed), Vol 2. Fort Worth: UNT. 1–10

  • Elson EL, Magde D (1974) Fluorescence Correlation Spectroscopy: Coceptual Basis and Theory. Biopolymers 13:1–28

    Article  CAS  Google Scholar 

  • Forkey JN et al (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422(6930):399–404

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE (1998) Wag the tail: structural dynamics of actomyosin. Cell 93(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984a) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate. J Physiol (Lond) 354:577–604

    CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984b) Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres. J Physiol (Lond) 354:605–24

    CAS  Google Scholar 

  • Gomes AV, Potter JD (2004) Molecular and cellular aspects of troponin cardiomyopathies. Ann N Y Acad Sci 1015:214–24

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV, Liang J, Potter JD (2005) Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 280(35):30909–15

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924

    PubMed  CAS  Google Scholar 

  • Gryczynski Z et al (2006) Minimization of Detection Volume by Surface Plasmon-Coupled Emission. Anal Biochem 356:125–131

    Article  PubMed  CAS  Google Scholar 

  • Guth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2 + -specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262(28):13627–35

    PubMed  CAS  Google Scholar 

  • Hazlewood CF, Nichols BL, Chamberlain NF (1969) Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature 222(5195):747–50

    Article  PubMed  CAS  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Lett 19:780–782

    Article  CAS  Google Scholar 

  • Herrmann C et al (1993) A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking. Biochemistry 32(28):7255–63

    Article  PubMed  CAS  Google Scholar 

  • Hooijman P, Stewart MA, Cooke R (2011) A new state of cardiac Myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys J 100(8):1969–76

    Article  PubMed  CAS  Google Scholar 

  • Hopkins SC et al (1998) Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys J 74(6):3093–110

    Article  PubMed  CAS  Google Scholar 

  • Hopkins SC et al (2002) Orientation changes of the myosin light chain domain during filament sliding in active and rigor muscle. J Mol Biol 318(5):1275–91

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DJ et al (2011) Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle. J Mol Biol 407(5):716–30

    Article  PubMed  CAS  Google Scholar 

  • Klar TA et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15):8206–10

    Article  PubMed  CAS  Google Scholar 

  • Kodera N et al (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–6

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer

  • Levine RJ et al (1991) Effects of phosphorylation by myosin light chain kinase on the structure of Limulus thick filaments. J Cell Biol 113(3):563–72

    Article  PubMed  CAS  Google Scholar 

  • Levine RJ et al (1995) Myosin regulatory light chain phosphorylation and the production of functionally significant changes in myosin head arrangement on striated muscle thick filaments. Biophys J 68(4 Suppl):224S

    PubMed  CAS  Google Scholar 

  • Lu H et al (2009) Diffusive movement of processive kinesin-1 on microtubules. Traffic 10(10):1429–38

    Article  PubMed  CAS  Google Scholar 

  • Lu H et al (2010) Simultaneous observation of tail and head movements of myosin V during processive motion. J Biol Chem 285(53):42068–74

    Article  PubMed  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61

    Article  PubMed  CAS  Google Scholar 

  • Mettikolla P et al (2010) Kinetics of a Single Cross-Bridge in a Familial Hypertrophic Cardiomyopathy Heart Muscle Measured by Reverse Kretschmann Fluorescence. J Biomed Optics 15(1):017011

    Article  Google Scholar 

  • Mettikolla P et al (2011) Cross-bridge Kinetics in Myofibrils Containing Familial Hypertrophic Cardiomyopathy R58Q Mutation in the Regulatory Light Chain of Myosin. J Theor Biol 284:71–81

    Article  PubMed  CAS  Google Scholar 

  • Midde K et al (2011a) Evidence for pre-and post-power stroke of cross-bridges of contracting skeletal myofibrils. Biophys J 100(4):1024–1033

    Article  PubMed  CAS  Google Scholar 

  • Midde K et al (2011b) Myosin Cross-Bridges Do Not Form Precise Rigor Bonds in Hypertrophic Heart Muscle Carrying Troponin T Mutations. J Mol Cell Cardiol 51(3):409–18

    Article  PubMed  CAS  Google Scholar 

  • Minoda H et al (2011) Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber. Biochem Biophys Res Commun 405(4):651–6

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276(14):10577–80

    Article  PubMed  CAS  Google Scholar 

  • Mogensen J et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111(2):209–16

    PubMed  CAS  Google Scholar 

  • Morales MF (1995) A brief and subjective history of contractility. Protein Sci 4:130–2

    Article  PubMed  CAS  Google Scholar 

  • Muthu P et al (2008) Cross-bridge duty cycle in isometric contraction of skeletal myofibrils. Biochemistry 47:5657–5667

    Article  PubMed  CAS  Google Scholar 

  • Naber N, Cooke R, Pate E (2011) EPR Spectroscopy Shows Oriented Myosin Heads in Relaxed Muscle Fibers. Biophysical Soc 55th Annual Meeting:26

  • Oplatka A, Tirosh R (1973) Active streaming in actomyosin solutions. Biochim Biophys Acta 305(3):684–8

    Article  PubMed  CAS  Google Scholar 

  • Oplatka A et al (1974) Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives. J Mechanochem Cell Motil 2(4):295–306

    PubMed  CAS  Google Scholar 

  • Qian H, Saffarian S, Elson EL (2002) Concentration fluctuations in a mesoscopic oscillating chemical reaction system. Proc Natl Acad Sci USA 99(16):10376–81, Epub 2002 Jul 17

    Article  PubMed  CAS  Google Scholar 

  • Quinlan ME, Forkey JN, Goldman YE (2005) Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy. Biophys J 89(2):1132–42, Epub 2005 May 13

    Article  PubMed  CAS  Google Scholar 

  • Reifenberger JG et al (2009) Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm. Proc Natl Acad Sci USA 106(43):18255–60

    Article  PubMed  CAS  Google Scholar 

  • Sabido-David C et al (1998) Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine. Biophys J 74(6):3083–3092

    Article  PubMed  CAS  Google Scholar 

  • Sleep J, Lewalle A, Smith D (2006) Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures. Proc Natl Acad Sci USA 103(5):1278–82

    Article  PubMed  CAS  Google Scholar 

  • Spudich JA (2008) Molecular motors: a surprising twist in myosin VI translocation. Curr Biol 18(2):R68–70

    Article  PubMed  CAS  Google Scholar 

  • Stewart MA et al (2010) Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc Natl Acad Sci USA 107(1):430–5

    Article  PubMed  CAS  Google Scholar 

  • Sun Y et al (2007) Myosin VI walks "wiggly" on actin with large and variable tilting. Mol Cell 28(6):954–64

    Article  PubMed  CAS  Google Scholar 

  • Sun Y et al (2010) Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 17(4):485–91

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi A (1974) The mechanism of muscle contraction. Proc Natl Acad Sci USA 71(9):3343–4

    Article  PubMed  CAS  Google Scholar 

  • Thomas DD, Cooke R (1980) Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys J 32:891–905

    Article  PubMed  CAS  Google Scholar 

  • Tian Q et al (2011) Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol

  • Tirosh R, Oplatka A, Chet I (1973) Motility in a "cell sap" of the slime mold physarum polycephalum. FEBS Lett 34(1):40–2

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT, Mendelson RA (1975) Polarization from a helix of fluorophores and its relation to that obtained from muscle. Biophys J 15:455–467

    Article  PubMed  CAS  Google Scholar 

  • Tsaturyan AK et al (1999) Structural changes in the actin-myosin cross-bridges associated with force generation induced by temperature jump in permeabilized frog muscle fibers. Biophys J 77(1):354–72

    Article  PubMed  CAS  Google Scholar 

  • Urban NT et al (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–84

    Article  PubMed  CAS  Google Scholar 

  • Warshaw DM et al (1998) Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci USA 95(14):8034–8039

    Article  PubMed  CAS  Google Scholar 

  • Wen Y et al (2009) Functional effects of a restrictive-cardiomyopathy-linked cardiac troponin I mutation (R145W) in transgenic mice. J Mol Biol 392(5):1158–67

    Article  PubMed  CAS  Google Scholar 

  • Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–9

    Article  PubMed  CAS  Google Scholar 

  • Wu S et al (2010) Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 5(9)

  • Yamada T (2001) 1H-NMR studies of the intracellular water of skeletal muscle fibers under various physiological conditions. Cell Mol Biol (Noisy-le-Grand) 47(5):925–33

    CAS  Google Scholar 

  • Yildiz A et al (2004a) Kinesin walks hand-over-hand. Science 303(5658):676–8

    Article  PubMed  CAS  Google Scholar 

  • Yildiz A et al (2004b) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem 279(36):37223–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH R01AR048622 and R01HL090786 grants and by Predoctoral Fellowship 12PRE8730003 from AHA. The transgenic and WT frozen hearts were kindly donated by Dr. James D. Potter (University of Miami, Miller School of Medicine) and Dr J. Pinto (Florida State University). We thank Amy Li for comments on the manuscript.

Conflict of interest

No conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Borejdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borejdo, J., Rich, R. & Midde, K. Mesoscopic analysis of motion and conformation of cross-bridges. Biophys Rev 4, 299–311 (2012). https://doi.org/10.1007/s12551-012-0074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0074-y

Keywords

Navigation