Skip to main content
Log in

The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Novel strategies that address vitamin A deficiency have been developed, such as high-carotenoid maize, a biofortified transgenic maize line rich in carotenoids generated by genetic transformation. The South African white maize inbred (M37W), which is devoid of carotenoids, was engineered to accumulate high levels of β-carotene (provitamin A), lutein, and zeaxanthin. Maize seeds contaminated with fumonisins and other mycotoxins pose a serious threat to both humans and livestock. During three consecutive harvests, the fungal incidence and the fumonisin and aflatoxin content of maize seeds grown in an experimental field in Catalonia (Northeastern Spain) were evaluated. Fungal infection was similar in high-carotenoid maize and its isogenic line, with Fusarium verticillioides being the most prevalent fungus in all the harvests. Neither Aspergillus spp. nor aflatoxin contamination was found. Fumonisin levels were lower in high carotenoid than in its isogenic line, but this reduction was statistically significant in only 2 of the 3 years of study. Our results suggest that high carotenoid content reduces fumonisin levels in maize grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFs:

Aflatoxins

FBs:

Fumonisins

FB1 :

Fumonisin B1

FB2 :

Fumonisin B2

AFB1 :

Aflatoxin B1

AFB2 :

Aflatoxin B2

AFG1 :

Aflatoxin G1

AFG2 :

Aflatoxin G2

HPLC:

High-performance liquid chromatography

References

  • AOAC International (2005) International Method 925.09B. Official methods of analysis, 18th edn. AOAC, Inc., Gaithersburg

    Google Scholar 

  • Atanasova-Pénichon V, Barreau C, Richard-Forget F (2016) Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol 7:1–16

  • Bakan B, Melcion D, Richard-Molard D, Cahagnier B (2002) Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem 50:728–731

    Article  CAS  PubMed  Google Scholar 

  • Berman J (2016) Unraveling the molecular bases of carotenoid biosynthesis in maize. Doctoral Thesis, University of Lleida, Lleida, Spain, January 2016

  • Blandino M, Reyneri A (2007) Comparison between normal and waxy maize hybrids for Fusarium-toxin contamination in NW Italy. Maydica 52:127–134

    Google Scholar 

  • Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant-Microbe Interact 18:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Boutigny AL, Richard-Forget F, Barreau C (2008) Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 121:411–423

    Article  CAS  Google Scholar 

  • Cano-Sancho G, Ramos AJ, Marín S, Sanchis V (2012) Occurrence of fumonisins in Catalonia (Spain) and an exposure assessment of specific population groups. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:799–808

    Article  CAS  PubMed  Google Scholar 

  • Cao A, Santiago R, Ramos AJ, Souto XC, Aguín O, Malvar RA, Butrón A (2014) Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int J Food Microbiol 177:63–71

    Article  CAS  PubMed  Google Scholar 

  • Delgado RM, Sulyok M, Jirsa O, Spitzer T, Krska R, Polišenská I (2014) Relationship between lutein and mycotoxin content in durum wheat. Food Addit Contam Part A 31:1274–1283

    CAS  Google Scholar 

  • Demeke T, Clear RM, Patrick SK, Gaba D (2005) Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol 103:271–284

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins : chemistry, genetics and biology. The American Phytopathological Society (APS) Press, St. Paul

    Google Scholar 

  • European Commission (2006a) Commision Regulation (EC) No. 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union L70:12–34

    Google Scholar 

  • European Commission (2006b) Commision Regulation (EC) No. 1881/2006, of 19 December 2006, setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364:5–24

    Google Scholar 

  • European Commission (2007) Commision Regulation (EC) No. 1126/2007 of 28 September 2007, amending Regulation (EC) No. 1881/2006, setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union L255:14–17

    Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagnostic Investig 2:217–221

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog Risks Humans 82:169–366

    Google Scholar 

  • International Agency for Research on Cancer (IARC) (2012) Aflatoxins. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Humans 100 F:226–248

    Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2001) Safety evaluation of certain mycotoxins in food. 56th meeting of the JECFA, International Programme on Chemical Safety. WHO, Geneva, WHO Food Additives Series No. 47

  • Jurado M, Vázquez C, Marín S, Sanchis V, González-Jaén MT (2006) PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst Appl Microbiol 29:681–689

    Article  CAS  PubMed  Google Scholar 

  • Kellerman TS, Marasas WFO, Thiel PG, Gelderblom WCA, Cawood ME, Coetzer JAW (1990) Leukoencephalomacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort J Vet Res 57:269–275

    CAS  PubMed  Google Scholar 

  • Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín S, Magan N, Ramos AJ, Sanchis V (2004) Fumonisin-producing strains of Fusarium: a review of their ecophysiology. J Food Prot 67:1792–1805

    PubMed  Google Scholar 

  • Marín S, Ramos AJ, Cano-Sancho G, Sanchis V (2012) Reduction of mycotoxins and toxigenic fungi in the mediterranean basin maize chain. Phytopathol Mediterr 51:93–118

    Google Scholar 

  • Marín S, Ramos AJ, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237

    Article  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, Joyce D (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53:17–37

    Article  CAS  Google Scholar 

  • Norton RA (1997) Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus. Phytopathology 87:814–821

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylo Evol 7:103–116

    Article  Google Scholar 

  • Patiño B, Mirete S, González-Jaén MT, Mulé G, Rodriguez MT, Vázquez C (2004) PCR detection assay of fumonisin-producing Fusarium verticillioides strains. J Food Prot 67:1278–1283

    PubMed  Google Scholar 

  • Picot A, Atanasova-Pénichon V, Pons S, Marchegay G, Barreau C, Pinson-Gadais L, Roucolle J, Daveau F, Caron D, Richard-Forget F (2013) Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. J Agric Food Chem 61:3389–3395

    Article  CAS  PubMed  Google Scholar 

  • Picot A, Barreau C, Pinson-Gadais L, Caron D, Lannou C, Richard-Forget F (2010) Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol 36:221–231

  • Picot A, Barreau C, Pinson-Gadais L, Piraux F, Caron D, Lannou C, Richard-Forget F (2011) The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl Environ Microbiol 77:8382–8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer, Berlin

    Book  Google Scholar 

  • Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911

    Article  CAS  PubMed  Google Scholar 

  • Santiago R, Cao A, Butrón A (2015) Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins 7:3267–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servei Metereològic de Catalunya http://www.meteo.cat. Accessed 21 June 2016

  • Shephard GS (2008) Determination of mycotoxins in human foods. Chem Soc Rev 37:2468–2477

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Sydenham EW, Shephard GS, Thiel PG, Stockenström S, Snijman P (1996) Liquid chromatographic determination of fumonisins B1, B2 and B3 in corn: AOAC-IUPAC collaborative study. J AOAC Int 79:688–696

    CAS  PubMed  Google Scholar 

  • Velluti A, Marín S, Sanchis V, Ramos AJ (2001) Note. Occurrence of fumonisin B1 in Spanish corn-based foods for animal and human consumption. Food Sci Technol Int 7:433–437

  • Wang E, Norred WP, Bacon CW, Riley RT, Merril AH (1991) Inhibition of sphingolipids biosynthesis by fumonisins. J Biol Chem 266:14486–14490

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp. 315–322

    Google Scholar 

  • World Health Organization (WHO) (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global database on vitamin A deficiency. WHO, Geneva

  • Wicklow DT, Norton RA, McAlpin CE (1998) β-Carotene inhibition of aflatoxin biosynthesis among Aspergillus flavus genotypes from Illinois corn. Mycoscience 39:167–172

    Article  CAS  Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80:1106–1122

    CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by La Caixa (Recercaixa project PC084082 VitaMaize: high-quality and safe food through antioxidant fortified maize), the Agrotecnio Center, the Catalonian Government (2014 SGR 1296 Agricultural Biotechnology Research Group and XaRTA Reference Network on Food Technology) and the Spanish Ministry of Economy and Competitiveness (BIO2014-54441-P). J. Díaz-Gómez thanks the University of Lleida for a pre-doctoral grant. The authors would like to thank the Agricultural Biotechnology group of the University of Lleida, Antonio Michelena, and Jaume Lloveras for their work in the experimental field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Ramos.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Gómez, J., Marín, S., Nogareda, C. et al. The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content. Mycotoxin Res 32, 221–228 (2016). https://doi.org/10.1007/s12550-016-0254-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-016-0254-x

Keywords

Navigation