Skip to main content
Log in

Reply to “Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion” by van Loon (2013)

  • Commentary
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

The Original Article was published on 24 January 2013

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anderson GS (2010) Decomposition and invertebrate colonization of cadavers in coastal marine environments. In: Amendt J, Campobasso CP, Goff ML, Grassberger M (eds) Current concepts in forensic entomology. Springer, Dordrecht, Heidelberg, London, New York, pp 223–272

    Google Scholar 

  • Anderson GS, Bell LS (2010) Deep coast marine taphonomy: interim results from an ongoing experimental investigation of decomposition in the Saanich Inlet, British Columbia. Proc Am Acad Forensic Sci 16:381–382

    Google Scholar 

  • Bernaldo de Quirós Y, Seewald JS, Sylva SP, Greer B, Niemeyer M, Bogomolni AL, Moore MJ (2013) Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins. PLoS ONE 8(12):e83994. doi:10.1371/journal.pone.0083994

    Article  Google Scholar 

  • Blackburn DG, Weaber KK, Stewart JR, Thompson MB (2003) Do pregnant lizards resorb or abort inviable eggs and embryos? Morphological evidence from an Australian skink, Pseudemoia pagenstecheri. J Morphol 256:219–234

    Article  Google Scholar 

  • Böttcher R (1990) Neue Erkenntnisse über die Fortpflanzungsbiologie der Ichthyosaurier. Stuttgarter Beitr Naturk B 164:1–51

    Google Scholar 

  • Bour I, Mattioli E, Pittet B (2007) Nannofacies analysis as a tool to reconstruct paleoenvironmental changes during the early Toarcian anoxic event. Palaeogeogr Palaeoclimatol Palaeoecol 249:58–79

    Article  Google Scholar 

  • Brenner K (1976a) Ammonitengehäuse als Anzeiger für Paläo-strömungen. N Jb Geol Paläont, Abh 151:101–118

  • Brenner K (1976b) Schwarzschiefer biostratinomische Untersuchungen im Posidonienschiefer (Lias epsilon, Unteres Toarcium) von Holzmaden (Württemberg, Süd-Deutschland). Zbl Geol Paläont 2:223–226

    Google Scholar 

  • Brenner K, Seilacher A (1979) New aspects about the origin of the Toarcian Posidonia Shales. N Jb Geol Paläont, Abh 157:11–18

    Google Scholar 

  • Cope JCW, Ingham JK, Rawson PF (1992) Atlas of palaeogeography and lithofacies. Geol Soc Mem 13:1–152

    Article  Google Scholar 

  • Dumser TK, Türkay M (2008) Postmortem changes of human bodies on the Bathyal Sea Floor—two cases of aircraft accidents above the open sea. J Forensic Sci 53:1049–1052

    Article  Google Scholar 

  • Einsele G, Mosebach R (1955) Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. N Jb Geol Paläont, Abh 101:319–430

    Google Scholar 

  • Fröbisch NB, Sander M, Rieppel O (2006) A new species of Cymbospondylus (Diapsida, Ichthyosauria) from the Middle Triassic of Nevada and a re-evaluation of the skull osteology of the genus. Zool J Linn Soc 147:515–538

    Article  Google Scholar 

  • Gans C, Parsons TS (eds) (1977) Biology of the Reptilia. Morphology E. Academic Press, London, New York

    Google Scholar 

  • Hallam A (1988) A re-evaluation of the Jurassic eustasy in the light of new data and the revised Exxon curve. SEPM Soc Sed Geol Spec Publ 42:261–273

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Hänggi H, Reisdorf AG (2007) Der Ichthyosaurier vom Hauensteiner Nebelmeer—Wie eine Kopflandung die Wissenschaft Kopf stehen lässt. Mitt Naturforsch Ges Kanton Solothurn 40:7–22

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Spec Publ 42:71–108

    Google Scholar 

  • Harazim D, Van De Schootbrugge B, Sorichter K, Fiebig J, Weug A, Suan G, Oschmann W (2013) Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60:359–390

    Article  Google Scholar 

  • Hauff B, Hauff RB (1981) Das Holzmadenbuch. Hauff & Hauff, Holzmaden, Teck

    Google Scholar 

  • Heller W (1966) Untersuchungen zur sogenannten Hauterhaltung bei Ichthyosauriern aus dem Lias epsilon Holzmadens (Schwaben). N Jb Geol Paläont, Mh 1966:304–317

    Google Scholar 

  • Hewitt RA, Westermann GEG (1987) Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry. Paläontol Z 70:405–424

    Article  Google Scholar 

  • Hofmann J (1958) Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6:10–55

    Google Scholar 

  • Hui CA (1975) Thoracic collapse as affected by the retia thoracica in the dolphin. Respir Physiol 25:63–70

    Article  Google Scholar 

  • Kanie Y, Hattori M (1983) Shell implosion depth of living Nautilus. Occas Pap 1:30–35

    Google Scholar 

  • Kauffman EG (1979) Benthic environments in paleoecology of the Posidonienschiefer (Toarcian). N Jb Geol Paläont, Abh 157:18–36

    Google Scholar 

  • Kauffman EG (1981) Ecolocial reappraisal of the German Posidonienschiefer and the Stagnant Basin Model. In: Gray J, Boucot AJ, Berry WBN (eds) Communities of the past. Hutchinson Ross, Stroudsburg, pp 311–381

    Google Scholar 

  • Kear BP, Zammit M (2014) In utero foetal remains of the Cretaceous ichthyosaurian Platypterygius: ontogenetic implications for character state efficacy. Geol Mag 151:71–86

  • Keller T (1992) “Weichteil-Erhaltung” bei großen Vertebraten (Ichthyosauriern) des Posidonienschiefers Holzmadens (Oberer Lias, Mesozoikum Süddeutschlands). Kaupia–Darmstädter Beitr Naturgesch 1:23–62

  • Kelly D (1990) Postmortem gastrointestinal gas production in submerged Yucatan micro-pigs. Unpublished MA thesis. Colorado State University, Fort Collins

  • Kooyman GL (1989) Diverse divers. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Lindgren J, Sjövall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ (2014) Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506(7489):484–488. doi:10.1038/nature12899

  • Mallach HJ, Schmidt WK (1980) Über ein quantitatives und qualitatives Verfahren zum Nachweis der Luft- oder Gasembolie. Beitr Gerichtl Med 38:409–419

    Google Scholar 

  • Martill DM (1993) Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia–Darmstädter Beitr Naturgesch 2:77–97

    Google Scholar 

  • Maxwell EE, Caldwell MW (2003) First record of live birth in Cretaceous ichthyosaurs: closing an 80 million year gap. Proc R Soc Lond Ser B 270[Suppl]:S104–S107

    Article  Google Scholar 

  • McGhee GR (2011) Convergent evolution: limited forms most beautiful. The MIT Press, Cambridge, London

    Book  Google Scholar 

  • Motani R, D-y J, Tintori A, Rieppel O, G-b C (2014) Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by early Triassic embryonic fossils. PLoS ONE 9:e88640

    Article  Google Scholar 

  • Osborn HF (1905) Ichthyosaurs. The evolution of fitness in ichthyosaurs (Fossil wonders of the West). Cent Mag 69:414–422

    Google Scholar 

  • Polmar N (2004) The death of the U.S.S. Thresher: the story behind history’s deadliest submarine disaster. Lyons Press, Guilford

    Google Scholar 

  • Prauss M, Ligouis B, Luterbacher H (1991) Organic matter and palynomorphs in the “Posidonienschiefer” (Toarcian, Lower Jurassic) of southern Germany. In: Thyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58:335–351

  • Reisdorf AG (2007) No joke movement: Mehr über den Hauensteiner Ichthyosaurier und rezente marine Lungenatmer. Mitt Naturforsch Ges Kanton Solothurn 40:23–49

    Google Scholar 

  • Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s Opisthotonic-Posture Hypothesis in fossil vertebrates. Part I: reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92:119–168

  • Reisdorf AG, Wuttke M (2013) Exploding the myth: can carcasses explode? In: 57th Annu Meet Palaeont Assoc (Programme and Abstracts). The Palaeontological Association. Zurich, p 84

  • Reisdorf AG, Bux R, Wyler D, Benecke M, Klug C, Maisch MW, Fornaro P, Wetzel A (2012) Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92:67–81

  • Ridgway SH, Scronce BL, Kanwisher J (1969) Respiration and deep diving in the bottlenose porpoise. Science 166:1651–1654

    Article  Google Scholar 

  • Riegraf W (1985) Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tübinger Mikropal Mitt 3:1–232

    Google Scholar 

  • Riegraf W, Werner G, Lörcher F (1984) Der Posidonienschiefer. Enke, Stuttgart

    Google Scholar 

  • Röhl H-J (1998) Hochauflösende palökologische und sedimentologische Untersuchungen im Posidonienschiefer (Lias ε) von SW-Deutschland. Tübinger Geowissenschaft Arb Reihe A 47:1–170

    Google Scholar 

  • Röhl H-J, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: a sequence stratigraphic case study from the SW German Posidonia Shale. SEPM Soc Sed Geol Spec Publ 82:165–189

    Google Scholar 

  • Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate”. Palaeogeogr Palaeoclimatol Palaeoecol 169:273–299

    Article  Google Scholar 

  • Schieber J, Southard J, Thaisen K (2007) Accretion of mudstone beds from migrating floccule ripples. Science 318:1760–1763

    Article  Google Scholar 

  • Schmid-Röhl A, Röhl H-J (2003) Overgrowth on ammonite conchs—environmental implications of the Lower Toarcian Posidonia Shale. Palaeontology 46:339–352

    Article  Google Scholar 

  • Scholle PA, Arthur MA, Ekdale AA (1983) Pelagic environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol Mem 33:619–691

  • Seilacher A (1982) Posidonia Shale (Toarcian, S. Germany)—stagnate basin model revalidated. In: Gallitelli EM (ed) Palaeontology, essential of historical geology. STEM Mucchi, Modena, pp 25–55

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

  • Suan G, Rulleau L, Mattioli E, Suchéras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Léna A, Spangenberg JE, Föllmi KB (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol 150:728–742

  • Taylor MA (1987) Reinterpretation of ichthyosaurs swimming and buoyancy. Palaeontology 30:531–535

    Google Scholar 

  • Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31

    Article  Google Scholar 

  • Teather RG (1994) Encyclopedia of underwater investigations. Best Publishing Company, Flagstaff

    Google Scholar 

  • van Loon AJ (2013) Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion. Palaeobio Palaeoenv 93:103–109

    Article  Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Wahl WR (2009) Taphonomy of a nose dive: bone and tooth displacement and mineral accretion in an Ichthyosaur Skull. Paludicola 7:107–116

    Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735

    Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  Google Scholar 

  • Wetzel A, Reisdorf AG (2007) Ichnofabrics elucidate the accumulation history of a condensed interval containing a vertically emplaced ichthyosaur skull. SEPM Soc Sed Geol Spec Publ 88:241–251

    Google Scholar 

  • Wetzel A, Uchman A (1998) Biogenic sedimentary structures in mudstones—an overview. In: Schieber J, Zimmerle W, Sethi P (eds) Shales and mudstones, I. Schweizerbart, Stuttgart, pp 351–369

    Google Scholar 

  • Wetzel A, Weissert H, Schaub M, Voegelin AR (2013) Seawater circulation on an oolite-dominated carbonate system in an epeiric sea (Middle Jurassic, Switzerland). Sedimentology 60:19–35

    Article  Google Scholar 

  • Wiesenburg DA, Guinasso NL Jr (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360

    Article  Google Scholar 

  • Zammit M, Kear BP, Norris RM (2014) Locomotory capabilities in the early Cretaceous ichthyosaur Platypterygius australis based on osteological comparisons with extant marine mammals. Geol Mag 151:87–99

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, The Hague

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim G. Reisdorf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisdorf, A.G., Anderson, G.S., Bell, L.S. et al. Reply to “Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion” by van Loon (2013). Palaeobio Palaeoenv 94, 487–494 (2014). https://doi.org/10.1007/s12549-014-0162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-014-0162-z

Keywords

Navigation