Skip to main content

Advertisement

Log in

Amphisbaenians from the European Eocene: a biogeographical review

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

In this paper, part of the amphisbaenian fossil record from the european Eocene is revised. There is no evidence for the existence of amphisbaenian lizards in Europe or on other continents during the Late Cretaceous. Crown amphisbaenians were present in Europe in the early Paleocene and throughout the Paleogene, with the notable exception of the middle Eocene. In particular, they were not found at Messel. European fossil taxa previously assigned to the amphisbaenians are briefly reviewed, and a description of some representative specimens from the Eocene fossil record is presented: dentary and vertebrae from Mutigny (early Eocene, France) are referred to the North American genus Anniealexandria; fossils from the late Eocene of the Phosphorites du Quercy (France) are attributed to Blanidae, and they are the earliest secure occurrence of Blanidae in the fossil record; and dentaries and maxillae from Grisolles (middle-late Eocene, Paris Basin, France) are referred to a new species, Louisamphisbaena ferox. Global distribution of fossil amphisbaenians in the Eocene reveals at least one episode of dispersal between North America and Europe during the early Eocene. Finally, some explanations are suggested for the absence of crown amphisbaenians at Messel and in the European middle Eocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alroy J, Koch PL, Zachos JC (2000) Global climate change and North American mammalian evolution. In: Erwin DH, Wing SL (eds) Deep time. Paleobiology Suppl 26(4):259–288

  • Astibia H, Buffetaut E, Buscalioni AD, Cappetta H, Corral C, Garcia-Garmilla F, Jaeger JJ, Jimenez-Fuentes E, Le Loeuff J, Mazin JM, Orue-Etxebarria X, Pereda-Suberbiola J, Powell JE, Rage JC, Rodriguez-Lazaro J, Sanz JL, Tong H (1990) The fossil vertebrates from Lano (Basque Country, Spain); new evidence on the composition and affinities of the Late Cretaceous continental faunas of Europe. Terra Nova 2:460–466

    Article  Google Scholar 

  • Augé M (1992) Campinosaurus woutersi n.g. n.sp., Anguimorphe nouveau (Lacertilia) de l’Eocène inférieur de Dormaal, Belgique. Une relique éocène des Dorsetisauridae du Crétacé basal? CR Acad Sci, Paris 315(II):885–889

    Google Scholar 

  • Augé M (2003) Lacertilian faunal change across the Paleocene-Eocene boundary in Europe. In Wing SL, Gingerich PD, Schmitz B, Thomas E (eds), Causes and Consequences of globally warm climates in the Early Paleogene. Boulder, Colorado, Geol Soc Am Spec Paper 369:441–453

  • Augé M (2005) Evolution des lézards du Paléogène en Europe. Mém Mus Natl Hist Nat Paris 192

  • Augé M (2007) Past and present distribution of iguanid lizards. Arqu Museu Nac Rio de Janeiro 65(4):403–416

    Google Scholar 

  • Augé M, Rage JC (2006) Herpetofaunas from the Upper Paleocene and Lower Eocene of Morocco. Annal Paléont 92:235–253

    Article  Google Scholar 

  • Augé M, Smith R (2009) An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene–Oligocene transition. Zool J Linn Soc 155:148–170

    Article  Google Scholar 

  • Avery DF, Tanner W (1971) Evolution of the Iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters. Brigh Young Univ Sci Bull 12:1–79

    Google Scholar 

  • Bailon S (2000) Amphibiens et reptiles du Pliocène terminal d’Ahl al Oughlam (Casablanca, Maroc). Geodiversitas 22(4):539–558

    Google Scholar 

  • Berman DS (1972) Hyporhina tertia, new species (Reptilia: Amphisbaenia), from the early Oligocene (Chadronian) white river formation of Wyoming. Ann Carn Mus 44:1–10

    Google Scholar 

  • Berman DS (1973) Spathorhynchus fossorium, a middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia 4:704–721

    Article  Google Scholar 

  • BiochroM’97 (1997) Actes du Congrès BiochroM’97. In: Aguilar JP, Legendre S, Michaux J (eds) Mem Trav EPHE, Inst Montpellier 21

  • Blain HA, Bailon S, Agusti J (2007) Anurans and squamate reptiles from the latest early Pleistocene of Almenara-Casablanca-3 (Castellón, East of Spain). Systematic, climatic and environmental considerations. Geodiversitas 29(2):269–295

    Google Scholar 

  • Blain HA, Canudo JI, Cuenca-Bescos G, Lopez-Martinez N (2010) Amphibians and squamate reptiles from the latest Maastrichtian (Upper Cretaceous) of Blasi 2 (Huesca, Spain). Cret Res 31:433–446

    Article  Google Scholar 

  • Böhme M (2007) Herpetofauna (Anura, Squamata) and paleoclimatic implications: preliminary results. In: Daxner-Höck G (ed) Oligocene vertebrates from the Valley of lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications. Ann Naturhist Mus Wien 108A:43–52

  • Böhme M (2008) Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Cour Forsch-Inst Senckenberg 260:161–183

    Google Scholar 

  • Borsuk-Bialynicka M (1991) Cretaceous lizard occurences in Mongolia. Cret Res 12:607–608

    Article  Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity. University of Chicago Press, Chicago

    Google Scholar 

  • Camp CL (1923) A classification of the lizards. Bull Am Mus Nat Hist 48:289–481

    Google Scholar 

  • Charig AJ, Gans C (1990) Two new amphisbaenians from the Lower Miocene of Kenia. Bull Br Mus Nat Hist (Geol) 46(1):19–36

    Google Scholar 

  • De Rochebrune A (1884) Faune ophiologique des Phosphorites du Quercy. Mém Soc Sci Nat Saône et Loire 5:149–164

    Google Scholar 

  • Delfino M (1997) Blanus from the early pleistocene of Southern Italy, another small tessera from a big mosaic. In: Böhme W, Bischoff W, Ziegler T (eds) Herpetologia Bonnensis II. Societas Europea Herpetologica, Bonn, pp 89–97

  • Donadio OE (1982) Restos de anfisbenidos fósiles de Argentina (Squamata, Amphisbaenidae) del Pli- oceno y Pleistoceno de la provincia de Buenos Aires. Circ Inf Asoc Paleont Arg 10:10

    Google Scholar 

  • Erwin TL (1979) Thoughts on the evolutionary history of ground beetles: Hypotheses generated from comparative faunal analyses of lowland forest sites in temperate and tropical regions. In: Erwin TL, Ball GE, Whitehead DR (eds) Carabid beetles: Their evolution, natural history, and classification. Junk, The Hague, pp 539–592

    Google Scholar 

  • Erwin TL (1981) Taxon pulses, vicariance, and dispersal: An evolutionary synthesis illustrated by carabid beetles. In: Nelson G, Rosen DE (eds) Vicariance biogeography: A critique. Columbia University Press, New York, pp 371–391

    Google Scholar 

  • Estes R (1965) Notes on some Paleocene lizards. Copeia 1965:104–106

    Article  Google Scholar 

  • Estes R (1975) Lower vertebrates from the Fort Union formation, late Paleocene, Big Horn Basin, Wyoming. Herpetologica 31:365–385

    Google Scholar 

  • Estes R (1983) Sauria terrestria, Amphisbaenia. In: Kuhn O, Wellnhofer P (eds) Handbuch der Paläoherpetologie, Teil 10A, Gustav Fischer, pp 1–249

  • Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard Families. Stanford University Press, Stanford, pp 119–281

  • Folie A (2006) Evolution des amphibiens et squamates de la transition Crétacé-Paléogène en Europe: les faunes du Maastrichtien du Bassin de Hateg (Roumanie) et du Paléocène du Bassin de Mons (Belgique). Dissertation, Université libre de Bruxelles

  • Franzen JL (2005) The implication of the numerical dating of the Messel fossil deposit (Eocene, Germany). Ann Paleont 91(4):329–335

    Article  Google Scholar 

  • Gans C (1968) Relative success of divergent pathways in amphisbaenian specialization. Am Nat 102:345–362

    Article  Google Scholar 

  • Gans C (1974) Biomechanics, an approach to vertebrate biology. Lippincott, Philadelphia

    Google Scholar 

  • Gans C (1978) The characteristics and affinities of the Amphisbaenia. Trans Zool Soc Lond 34:347–416

    Article  Google Scholar 

  • Gans C (1990) Patterns in amphisbaenian biogeography: A preliminary analysis. In: Peters G, Hutterer R (eds) Vertebrates in the tropics. Museum Alexander Koenig, Bonn, pp 133–143

    Google Scholar 

  • Gans C (2005) Checklist and bibliography of the amphisbaenia of the world. Bull Amer Mus Nat Hist 289:1–130

    Article  Google Scholar 

  • Gaston K (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

  • Gheerbrant E, Cappetta H, Feist M, Jaeger JJ, Sudre J, Vianey-Liaud M (1993) La succession des faunes de vertébrés d’âge paléocène supérieur et Eocène inférieur dans le Bassin d’Ouarzazate. Portée biostratigraphique et paléogéographique. Newslett Strati 28:33–55

    Google Scholar 

  • Gheerbrant E, Abrial C, Cappetta H (1997) Nouveaux sites à microvertébrés continentaux du Crétacé terminal des Petites Pyrénées (Haute-Garonne et Ariège, France). Geobios 20:257–269

    Article  Google Scholar 

  • Gilmore CW (1928) Fossil lizards of North America. Mem Natl Acad Sci 22(3):1–201

    Google Scholar 

  • Gilmore CW (1942) Paleocene faunas of the polecat bench formation, Park County, Wyoming. part. II Lizards. Am Philos Soc Proc 85:159–167

    Google Scholar 

  • Gilmore CW (1943) Fossil lizards of Mongolia. Bull Am Mus Nat Hist 81:361–384

    Google Scholar 

  • Hartenberger JL (1987) Modalités des extinctions et apparitions chez les mammifères du Paléogène d’Europe. Mém Soc Géol Fr NS 150:133–143

    Google Scholar 

  • Hecht MK, Hoffstetter R (1962) Note préliminaire sur les Amphibiens et les Squamates du Landenien supérieur et du Tongrien de Belgique. Bull Inst R Soc Nat Belg 39:1–30

    Google Scholar 

  • Hedges SB, Vidal N (2009) Lizards, snakes and amphisbaenians (squamata). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 383–389

    Google Scholar 

  • Hembree DI (2006) Amphisbaenia paleobiogeography: evidence of vicariance and geodispersal patterns. Palaeogeogr Palaeoclimatol Palaeoecol 235:340–354

    Article  Google Scholar 

  • Hipsley CA, Himmelmann L, Metzler D (2009) Müller J (2009) Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol Biol 9:151

    Article  Google Scholar 

  • Hoffstetter R (1942) Sur la présence d’Amphisbaenidae dans les gisements tertiaires français. CR Sci Soc Geol Fr 3:24–25

    Google Scholar 

  • Hoffstetter R (1962) Revue des récentes acquisitions concernant l’histoire et la systématique des squamates. Problèmes actuels de Paléontologie (evolution des vertébrés). Coll Inter CNRS Paris 104:243–279

    Google Scholar 

  • Hoffstetter R (1967) Coup d’oeil sur les Sauriens (Lacertiliens) des couches de Purbeck (Jurassique supérieur d’Angleterre, Résumé d’un mémoire). Coll Inter CNRS 163:349–371

    Google Scholar 

  • Hooker JJ, Collinson ME, Sille NP (2004) Eocene-Oligocene mammalian faunal turnover in the Hampshire basin, UK: calibration to the global time scale and the major cooling event. J Geol Soc Lond 161:161–172

    Article  Google Scholar 

  • Huelsenbeck JP, Rannala B (2000) Using stratigraphic information in phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington DC, pp 165–191

  • Huey RB, Pianka ER, Egan ME, Coons LW (1974) Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus). Ecology 55:304–316

    Article  Google Scholar 

  • Hunn CA, Upchurch P (2001) The importance of time/space in diagnosing the causality of phylogenetic events: towards a chronobiogeographical paradigm. Syst Biol 50:391–407

    Google Scholar 

  • Kearney M (2003) Systematics of the Amphibaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herp Mono 17:1–74

    Article  Google Scholar 

  • Kearney M, Stuart BL (2004) Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc R Soc Lond B 271:1677–1683

    Article  Google Scholar 

  • Kearney M, Maisano JA, Rowe T (2005) Cranial anatomy of the extinct Amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 264:1–33

    Article  Google Scholar 

  • Kritzinger CC (1946) The cranial anatomy and kinesis of the South African amphisbaenid Monopeltis capensis Smith. South Afr J Sci 42:175–204

    Google Scholar 

  • Kuhn O (1940) Die Placosauriden und Anguiden aus dem Mittleren Eozän des Geiseltales. Nov Act Acad Leopoldina-Carolinska 53(8):461–486

    Google Scholar 

  • Leduc P (1996) Caractéristiques évolutives des faunes d’Europe occidentale et d’Amérique du Nord au Paléogène. Dissertation, l’Université Paris VI

  • Lieberman BS (2000) Paleobiogeography, using fossils to study global change, plate tectonics, and evolution. Topics in Geobiology, 16. Kluwer, Netherlands

  • Macey JR, Papenfuss TJ, Kuehl JV, Fourcade HM, Boore JL (2004) Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol Phylo Evol 33:22–31

    Article  Google Scholar 

  • Maisano JA, Kearney M, Rowe T (2006) Cranial anatomy of the spade-headed amphisbaenian Diplometopon zarudnyi (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 267:70–102

    Article  Google Scholar 

  • Maschio GF, Prudente A, Mott T (2009) Water dispersal of Amphisbaena alba and Amphisbaena amazonica (Squamata: Amphisbaenia: Amphisbaenidae) in Brazilian Amazonia. Zoologia (2009)

  • Milner AC, Milner AR, Estes R (1982) Amphibians and squamates from the Upper Eocene of Hordle Cliff, Hampshire, a preliminary report. Tert Res 4(1):149–154

    Google Scholar 

  • Milner AC, Milner AR, Evans SE (2000) Amphibians, reptiles and birds: a biogeographical review. In: Culver SJ, Rawson PF (eds) Biotic response to global change. Cambridge University Press, Cambridge

  • Montero R, Gans C (1999) The head skeleton of Amphisbaena alba Linnaeus. Ann Carn Mus 68:15–80

    Google Scholar 

  • Morrone JJ (2009) Evolutionary biogeography, an integrative approach with case studies. Columbia University Press, New York

  • Mott T, Vieites DR (2009) Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylo Evol 51:190–200

    Article  Google Scholar 

  • Müller J, Hipsley CA, Head J, Kardjilov N, Hilger A, Wuttke M, Reisz RR (2011) Eocene lizard from Germany reveals amphisbaenian origins. Nature 473:364–367

    Article  Google Scholar 

  • Nelson G (1974) Historical biogeography: an alternative formalization. Syst Zool 23:555–558

    Article  Google Scholar 

  • Nelson G, Platnick NI (1981) Systematics and biogeography: Cladistics and vicariance. Columbia University Press, New York

    Google Scholar 

  • Nessov LA (1985) Rare bony fishes, terrestrial lizards and mammals from the lagoonal zone of the Littoral lowlands of the Cretaceous of the Kyzylkumy. Yearbook All-Union Palaeont Soc, Leningrad 28:199–219

    Google Scholar 

  • Nessov LA, Gao K (1993) Cretaceous lizards from the Kizylkum Desert, Uzbekhistan. J Vertebr Paleontol 13:51A

    Google Scholar 

  • Oelrich T (1956) The anatomy of the head of Ctenosaura pectinata (Iguanidae). Misc Publ Mus Zool, Uni Michigan 94:1–122

    Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards, windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  • Rage JC (1976) Les squamates du Miocène de Béni Mellal, Maroc. Géol medit 3:57–70

    Google Scholar 

  • Rage JC (1978) Squamates. In: Geze B, Rage JC, Vergnaud-Grazzini C, de Broin F, Buffetaut E, Mourer-Chauviré C, Crochet JY, Sigé B, Sudre J, Rémy JA, Lange-Badré B, de Bonis L, Hartenberger JL, Vianey-Liaud M (eds) La Poche à Phosphate de Ste-Néboule (Lot) et sa faune de vertébrés du Ludien supérieur. Palaeovertebrata 8:167–326

  • Rage JC (1999) Squamates (Reptilia) from the Upper Cretaceous of Laño (Basque Country, Spain). Estud Museo Cienc Natur Alava, 14 num espec 1:121–133

    Google Scholar 

  • Rage JC (2006) The lower vertebrates from the Eocene and Oligocene of the Phosphorites du Quercy (France): an overview. Strata série 1(13):161–173

    Google Scholar 

  • Rage JC, Augé M (1993) Squamates from the Cainozoic of the western part of Europe. A review. Rev Paléobiol 7:199–216

    Google Scholar 

  • Rage JC, Augé M (2010) Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios 43:253–268

    Article  Google Scholar 

  • Rocek Z (1984) Lizards (Reptilia: Sauria) from the lower Miocene locality Dolnice (Bohemia, Czechoslovakia). Rozp Ceskoslo Akad Rada matem prirod ved 94(1):1–69

    Google Scholar 

  • Rose KD (2011) Importance of Messel for interpreting Eocene Holarctic mammalian faunas. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates (22nd Int Senckenberg conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 143–146

    Google Scholar 

  • Rusconi C (1937) La presencia de lagartijas en el piso Ensenadense. Bolet Paleont 9:6–7

    Google Scholar 

  • Savage JM (1982) The enigma of the Central American herpetofauna: dispersals or vicariance? Ann Missouri Bota Garden 69:464–547

    Article  Google Scholar 

  • Schleich HH (1985) Neue Reptilienfunde aus dem Tertiär Deutschlands. 3. Erstnachweis von Doppelschleichen (Blanus antiquus sp. nov.) aus dem Mittelmiozän Süddeutschlands. Münch Geowiss Abh (A) 4:67–149

    Google Scholar 

  • Schleich HH (1988) Neue Reptilienfunde aus dem Tertiär Deutschlands 8. Palaeoblanus tobieni n. gen., n. sp.- neue Doppelschleichen aus dem Tertiär Deutschlands. Paläontol Z 62(1/2):95–105

    Google Scholar 

  • Schmidt-Kittler N (ed) (1987) European reference levels and correlation tables. Münch Geowiss Abh (A) 10:15–31

  • Schopf TJ (1984) Climate is only half the story in the evolution of organisms through time. In: Brenchley P (ed) Fossils and climate. Wiley, New York

    Google Scholar 

  • Scotese CR (2004) Cenozoic and Mesozoic paleogeography: changing terrestrial biogeographic pathways. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography. Sinauer, Sunderland

  • Señaris JC (1999) Aportes al conocimiento taxonômico y ecológico de Amphisbaena gracilis Strauch 1881 (Squamata: Amphisbaenidae) em Venezuela. Fundación La Salle Ciências Naturales 152:115–120

    Google Scholar 

  • Smith KT (2006) A diverse new assemblage of late eocene squamates (Reptilia) from the Chadron formation of North Dakota, U.S.A. Palaeont Electro 9(2):1–44

    Google Scholar 

  • Smith KT (2009) A new lizard assemblage from the earliest Eocene (zone WAO) of the Bighorn Basin, Wyoming, USA. Biogeography during the warmest interval of the Cenozoic. J Syst Palaeont 7(3):299–358

    Article  Google Scholar 

  • Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 103(30):11223–11227

    Article  Google Scholar 

  • Stocker MR, Kirk EC (2011) The Herpetofauna from the late Uintan of West Texas. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: Puzzles in the palaeobiology, palaeoenvironment, and the history of the early primates (22nd Int Senckenberg conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 159–160

    Google Scholar 

  • Sullivan RM (1985) A new middle Paleocene (Torrejonian) rhineurid amphisbaenian, Plesiorhineura tsentasi new genus, new species, from the San Juan Basin, New Mexico. J Paleontol 59:1481–1485

    Google Scholar 

  • Sullivan RM, Holman JA (1996) Squamata. In: Prothero D, Emry R (eds) The terrestrial eocene-oligocene transition in North America. Cambridge University Press, Cambridge, pp 354–372

  • Sullivan RM, Keller T, Habersetzer J (1999) Middle Eocene (Geiseltalian) anguid lizards from Geiseltal and Messel, Germany. I. Ophisauriscus quadrupes Kuhn 1940. Cour Forsch–Inst Senckenberg 216:97–129

    Google Scholar 

  • Torres SE, Montero R (1998) Leiosaurus marellii Rusconi 1937, is a South American Amphisbaenid. J Herpetol 32(4):602–604

    Article  Google Scholar 

  • Townsend TM, Larson A, Louis E, Macey JR (2004) Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 53(5):735–757

    Article  Google Scholar 

  • Upchurch P, Hunn CA, Norman DB (2002) An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B 269:613–621

    Article  Google Scholar 

  • Van Dyck MC (1983) Etude de la faune herpétologique du “Montien” continental de Hainin (Hainaut, Belgique) et d’autres gisements paléogènes du Nord-Ouest de l’Europe. Thèse, Université Catholique de Louvain (Belgique), Faculté des Sciences, p 199

  • Vanzolini PE (1951) Evolution, adaptation and distribution of the amphisbaenid lizards (Sauria: Amphisbaenidae). Thesis, Harvard University

  • Venczel M, Stiuca E (2008) Late middle Miocene amphibians and squamate reptiles from Taut, Romania. Geodiversitas 30(4):731–763

    Google Scholar 

  • Vidal N, Hedges BS (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 328:1000–1008

    Article  Google Scholar 

  • Vidal N, Hedges BS (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol 332:129–139

    Article  Google Scholar 

  • Vidal N, Azvolinsky A, Cruaud C, Hedges BS (2008) Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 4:115–118

    Article  Google Scholar 

  • Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60(1):123–141

    Google Scholar 

  • Woodburne MA, Gunnell GF, Stucky RK (2009) Climate directly influences Eocene mammal faunal dynamics in North America. Proc Natl Acad Sci USA 106(32):13399–13403

    Article  Google Scholar 

  • Wu XC, Brinkman DB, Russell AP, Dang ZM, Currie PJ, Hou LH, Cui GH (1993) Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia. Nature 366:57–59

    Article  Google Scholar 

  • Wu XC, Brinkman DB, Russell AP (1996) Sineoamphisbaena hexatabularis, an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People’s Republic of China), and comments on the phylogenetic relationships of the Amphisbaenia. Can J Earth Sci 33:541–577

    Article  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zangerl R (1944) Contributions to the osteology of the skull of the Amphisbaenidae. Am Midl Nat 31(2):417–454

    Article  Google Scholar 

Download references

Acknowledgments

It is a particular pleasure to thank the Senckenberg Institute for its invitation to participate in the 22nd International Senckenberg Conference, and in particular T. Lehmann, S.F.K Schaal and S. Weber. For helpful advice and assistance, I would like to thank J.-C. Rage, K. Smith, J. Müller and S. Bailon. It is a pleasure to acknowledge the assistance provided by the MNHN and in particular by P. Janvier. I am indebted to C. Lemzaouda and P. Loubry from the MNHN for the photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Louis Augé.

Additional information

This article is a contribution to the special issue “Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augé, M.L. Amphisbaenians from the European Eocene: a biogeographical review. Palaeobio Palaeoenv 92, 425–443 (2012). https://doi.org/10.1007/s12549-012-0104-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-012-0104-6

Keywords

Navigation