Skip to main content
Log in

Locomotion and biomechanics in Eocene mammals from Messel

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Eocene mammals from Grube Messel are divided into those that lived terrestrially on the ground (2D-mammals) or arboreally (3D-mammals). Their biomechanics and locomotion are discussed on the basis of equids (Eurohippus, Propalaeotherium) and Leptictidium as examples of 2D-mammals and primates (Europolemur, Darwinius) of 3D-mammals. The determining factor for lifestyle is the autopodia: 2D-mammals need nothing more than compression-transmitting balls with reinforced anterior margins (hooves). These autopodia do not require much energy, but metapodia and even phalanges can elongate the functional length of the free limbs. Primates as 3D-animals need prehensile hands and feet, which can transmit tensile forces and even torques. Their metapodials are part of the prehensile organ. Their strong and energy-requiring musculature increases the masses on the distal limb segments and so influences the locomotor modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arms A, Voges D, Preuschoft H, Fischer M (2002) Arboreal locomotion in small new-world monkeys. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morphol Anthropol, Sonderh 83(2/3):243–263

  • Buck C, Bär H (1993) Investigations on the biomechanical significance of dermatoglyphic ridges. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 285–306

    Chapter  Google Scholar 

  • Camp CL, Smith N (1942) Phylogeny and functions of the digital ligaments of the horse. Mem Univ Calif 13:69–122

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins P (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand et al (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 73–88

    Google Scholar 

  • Christian A (1995) Zur Biomechanik der Lokomotion vierfüßiger Reptilien. Cour Forsch-Inst Senckenberg 180:1–58

    Google Scholar 

  • Christian A (1999) Zur Biomechanik der Fortbewegung von Leptictidium (Mammalia, Proteutheria). Cour Forsch-Inst Senckenberg 216:1–18

    Google Scholar 

  • Christian A, Horn HG, Preuschoft H (1994a) Bipedie bei rezenten Reptilien. Natur und Museum 124:45–57

    Google Scholar 

  • Christian A, Horn HG, Preuschoft H (1994b) Biomechanical reasons for bipedalism in reptiles. Amphibia-Reptilia 15:275–284

    Article  Google Scholar 

  • Demes B, Günther MM (1989a) Wie die Körpermasse den Springstil von Halbaffen und deren Proportionen bestimmt. Z Morphol Anthropol 77:209–225

    Google Scholar 

  • Demes B, Günther MM (1989b) Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatol 53:125–141

    Article  Google Scholar 

  • Dubbel H (1981) Taschenbuch des Maschinenbaus. Springer, Berlin

    Google Scholar 

  • Fischer M (1994) Crouched posture and high fulcrum, a principle of locomotion in small mammals. J Hum Evol 26:501–521

    Article  Google Scholar 

  • Fischer MS, Lilje KE (2011) Hunde in Bewegung. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Fischer M, Krause C, Lilje KE (2010) Evolution of chamaeleon locomotion, or how to become arboreal if being a reptile. Zoology 113(2):67–74

    Article  Google Scholar 

  • Franzen JL (1987) Ein neuer Primate aus dem Mitteleozän der Grube Messel (Deutschland, S-Hessen). Cour Forsch-Inst Senckenberg 91:151–187

    Google Scholar 

  • Franzen JL (1988) Ein weiterer Primatenfund aus der Grube Messel bei Darmstadt. Cour Forsch-Inst Senckenberg 107:275–289

    Google Scholar 

  • Franzen JL (2000) Europolemur kelleri n. sp. von Messel und ein Nachtrag zu Europolemur koenigswaldi (Mammalia, Primates, Notharctidae, Cercamoniinae). Senck leth 80:275–287

    Article  Google Scholar 

  • Franzen JL (2007) Eozäne Equoidea (Mammalia, Perissodactyla) aus der Grube Messel bei Darmstadt (Deutschland). Funde der Jahre 1969–2000. Schweiz Paläontol Abh 127:1–245

    Google Scholar 

  • Franzen JL (2010) Darwinius masillae – Darwins Halbaffe und die Primatenfunde aus der Grube Messel. Natur und Museum 140(1/2):12–29

    Google Scholar 

  • Franzen JL (2011) Strepsirrhine or haplorhine? In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 59–60

  • Franzen JL, Frey E (1993) Europolemur completed. Kaupia-Darmstädter Beitr Naturgesch 3:113–130

    Google Scholar 

  • Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, Koenigswald W, Smith H (2009) Complete primate skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology. PLoS One 4(5):1–27. doi:10.1371/journal.pone.0005723, e5723

    Article  Google Scholar 

  • Godinot M, Beard KC (1993) A survey of fossil primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Fischer, Wien, pp 335–378

    Chapter  Google Scholar 

  • Günther MM (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten mehrerer Halbaffen. Dissertation, FU Berlin

  • Günther MM, Preuschoft H, Ishida H, Nakano Y (1992) Can prosimian-like leaping be considered a preadaptation to bipedal walking in hominids? In: Matano S, Tuttle RH, Ishida H, Goodman M (eds) Topics in primatology, 3 Evolutionary biology, reproductive endocrinology and virology. University of Tokyo Press, Tokyo, pp 153–165

  • Herkner B (1989) Die Entwicklung der saltatorischen Bipedie bei Säugetieren innerhalb der Tetrapoden-Evolution. Cour Forsch-Inst Senckenberg 111:1–102

    Google Scholar 

  • Ishida H, Jouffroy FK, Nakano Y (1990) Comparative dynamics of pronograde and upside-down horizontal quadrupedalism in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 209–220

  • Jouffroy FK, Lessertisseur J (1979) Relationships between limb morphology and locomotor adaptations among prosimians: an osteometric study. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 143–181

    Google Scholar 

  • Jouffroy FK, Stern JT (1990) Telemetered EMG-study of the antigravity versus propulsive actions of the knee and elbow muscles in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo Firenze, pp 221–236

  • Jouffroy FK, Godinot M, Nakano Y (1993) Biometrical characteristics of primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 133–172

    Chapter  Google Scholar 

  • Koenigswald Wv, Habersetzer J, Gingerich PD (2011) Morphology and evolution of the distal phalanges in primates. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 91–94

  • Kümmell S (2009) Die Digiti der Synapsida: Anatomie, evolution und Konstruktionsmorphologie. Shaker, Aachen, p 424

    Google Scholar 

  • Kummer B (1959) Bauprinzipien des Säugerskeletes. Thieme, Stuttgart

    Google Scholar 

  • Kummer B (1960) Biomechanik des Säugerskelettes. In: Helmke JG, Lengerken H, Starck D (eds) Handbuch der Zoologie. Walter de Gruyter, Berlin, p 80 and following, 8, 6(2)

    Google Scholar 

  • Leakey MD (1987) Introduction to the hominid footprints. In: Leakey MD, Harris JM (eds) Laetoli: a Pleistocene site in northern Tansania. Clarendon Press, Oxford, pp 490–496

    Google Scholar 

  • Lehmann T (1974/1977) Elemente der Mechanik, 3 Bde., Braunschweig (Vieweg)

  • Mollison T (1911) Die Körperproportionen der Primaten. Gegenbauers Morphol Jahrb 42:79–304

    Google Scholar 

  • Morbeck ME (1979) Forelimb use and positional adaptation in Colobus guereza: integration of behavioural, ecological and anatomical data. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 95–117

    Google Scholar 

  • Nakano Y (1998) Footfall patterns in the early development of quadrupedal walking of Japanese macaques. In: Kimura T, Preuschoft H, Rose MD (eds) Development and control in primate locomotion. Folia Primatol spec iss 66:126–136

  • Nakano Y (2002) The effects of substratum inclination on locomotor patterns in primates. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morphol Anthropol, Sonderh 83:189–199

  • Nieschalk U (1991) Fortbewegung und Funktionsmorphologie von Loris tardigradus und anderen kleinen quadrupeden Halbaffen in Anpassung an unterschiedliche Habitate. Naturwiss Diss, Bochum

    Google Scholar 

  • Nieschalk U, Demes B (1993) Biomechanical determinants of reduction of the second ray in Lorisinae. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 225–234

    Chapter  Google Scholar 

  • Owen-Smith R (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Patel BA, Seiffert ER, Boyer DM (2011) Origin and early evolution of the grasping big toe in primates: new fossils and key characters evaluated within a phylogenetic context. In: Lehmann T, Schaal SFK (eds) The world at the time of Messel: puzzles in palaeobiology, palaeoenvironment and the history of early primates. (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 127–128

  • Pauwels F (1965) Gesammelte Abhandlungen zur Funktionellen Anatomie des Bewegunsapparates. Springer, Berlin

    Google Scholar 

  • Peters A, Preuschoft H (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In: Niemitz C (ed) Biology of tarsiers. G. Fischer, Stuttgart, pp 227–256

    Google Scholar 

  • Peters DS, Gutmann WF (1971) Über die Lesrichtung von Merkmals- und Konstruktionsreihen. Z zool Syst Evolutionsforsch 9:237–263

    Article  Google Scholar 

  • Pflughöft G (1990) Untersuchungen zum Verhalten von Lemur fulvus E. Geoffroy, 1796 und Lemur catta Linnaeus, 1758 in zoologischen Gärten unter besonderer Berücksichtigung der Positions- und Lokomotionsweisen sowie der Substratnutzung. Dissertation Berlin

  • Preuschoft H (1961) Muskeln und Gelenke der Hinterextremität des Gorilla. Morphol Jahrb 101:432–540

    Google Scholar 

  • Preuschoft H (1963) Beitrag zu Funktion des Pongidenfußes. Z Morphol Anthropol 53:19–28

    Google Scholar 

  • Preuschoft H (1969) Statische Untersuchungen am Fuß der Primaten. I. Phalangen und Metatarsalia. Z Anat Entwicklungsgesch 129:285–345

    Article  Google Scholar 

  • Preuschoft H (1970) Functional anatomy of the lower extremity. In: Bourne GH (ed) The chimpanzee, vol 3. Karger, Basel, pp 221–294

    Google Scholar 

  • Preuschoft H (1971) Body posture and mode of locomotion in early Pleistocene hominids. Folia Primatol 14:209–240

    Article  Google Scholar 

  • Preuschoft H (1973a) Functional anatomy of the upper extremity. In: Bourne GH (ed) The chimpanzee, vol 6. Karger, pp 34–120

    Google Scholar 

  • Preuschoft H (1973b) Body posture and locomotion in some East African Miocene Dryopithecinae. In: Day MH (ed) Human evolution, 11th edn. Taylor & Francis, London, pp 13–46

    Google Scholar 

  • Preuschoft H (1975) Body posture and mode of locomotion in fossil primates - method and example: Aegyptopithecus zeuxis. Symposium, 5th Congress of the International Primatological Society. Nagoya 1974, Japan Science Press, Tokyo, 345–359

  • Preuschoft H (2002) What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Z Morphol Anthropol 83:171–188

    Google Scholar 

  • Preuschoft H (2004a) Die Biomechanik des aufrechten Gangs und deren Konsequenzen für die Evolution des Menschen. Conard NJ (ed) Ringvorlesung “Woher kommt der Mensch?” Attempto, Tübingen, pp 32–68

  • Preuschoft H (2004b) Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384

    Article  Google Scholar 

  • Preuschoft H, Demes B (1984) Biomechanics of brachiation. In: Preuschoft H, Brockelman WY, Chivers DJ, Creel N (eds) The lesser apes. Evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 96–118

    Google Scholar 

  • Preuschoft H, Demes B (1985) Influence of size and proportions on biomechanics of brachiation. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 383–398

    Google Scholar 

  • Preuschoft H, Günther MM (1994) Biomechanics and body shape in primates compared with horses. Z Morphol Anthropol 80:149–165

    Google Scholar 

  • Preuschoft H, Witte H, Demes B (1992) Biomechanical factors that influence overall body shape of large apes and humans. In: Matanao S, Tuttle R, Ishida H, Goodman M (eds) Topics in primatology, evolutionary biology, vol 3. University of Tokyo Press, Tokyo, pp 259–289

    Google Scholar 

  • Preuschoft H, Godinot M, Beard C, Nieschalk U, Jouffroy FK (1993) Biomechanical considerations to explain important morphological characters of primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, pp 246–253

    Chapter  Google Scholar 

  • Preuschoft H, Witte H, Christian A, Recknagel S (1994) Körpergestalt und Lokomotion bei grossen Säugetieren. Verh Deutsch Zool Ges 87:147–163

    Google Scholar 

  • Preuschoft H, Witte H, Fischer M (1995) Locomotion in nocturnal primates. In: Alterman L et al (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 453–472

    Google Scholar 

  • Preuschoft H, Witte H, Christian A, Fischer M (1996) Size influence on primate locomotion and body shape, with special emphasis on the locomotion of “small mammals”. Folia Primatol 66:93–112

    Article  Google Scholar 

  • Preuschoft H, Christian A, Günther MM (1998) Size dependences in prosimian locomotion and their implications for the distribution of body mass. Folia Primatol 69(suppl 1):60–81

    Article  Google Scholar 

  • Preuschoft H, Schmidt M, Hayama S, Okada M (2003) The influence of three-dimensional movements of the forelimb on the shape of the thorax and its importance for erect body posture. In: Franzen JL (ed) Walking upright. Cour Forsch-Inst Senckenberg 243:9–24

  • Preuschoft H, Hohn B, Stoinski S, Witzel U (2011) Why so huge? Biomechanical reasons for the acquisition of large size in sauropod and theropod dinosaurs. In: Klein NK, Remes K, Gee CT, Sander M (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 197–218

    Google Scholar 

  • Rose MD (1979) Positional behaviour of natural populations: some quantitative results of a field study of Colobus guereza and Cercopithecus aethiops. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York, pp 95–117

    Google Scholar 

  • Schilling N, Fischer MS (1999) Kinematic analysis of treadmill locomotion of Tupaia glis (Scandentia, Tupaiidae). Z Säugetierkd 64:129–153

    Google Scholar 

  • Schmalfuss UK (1995) Kinematik und funktionelle Anatomie der Vorderextremität von Tragulus javanicus (Mammalia: Artiodactyla: Tragulidae), Diplomarbeit Biologie Tübingen

  • Schmidt M, Fischer M (2000) Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). Am J Phys Anthropol 111:245–262

    Article  Google Scholar 

  • Schmidt M, Voges C, Fischer M (2002) Shoulder movements during quadruped locomotion in arboreal primates. Z Morphol Anthropol 78:235–242

    Google Scholar 

  • Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438

    Google Scholar 

  • Schultz AH (1933) Die Körperproportionen der erwachsenen catarrhinen Primaten. Anthropol Anz 10:154–185

    Google Scholar 

  • Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh Koningl Akad Wetensch, Afd Natuurkd (2)142:1–128

    Google Scholar 

  • Stoinski S, Suthau T, Gunga HC (2011) Reconstructing body volume and surface area of dinosaurs using laser scanning and photogrammetry. In: Klein NK, Remes K, Gee CT, Sander M (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 94–115

    Google Scholar 

  • Van der Sluijs L, Gerken M, Preuschoft H (2010) Comparative analysis of walking gaits in South American camelids. J Zool. doi:10.1007/s10764-010-9399-1

  • Vilensky JA (1983) Gait characteristics of two macaques, with emphasis on relationships with speed. Am J Phys Anthropol 61:255–265

    Article  Google Scholar 

  • Vilensky JA, Gankiewicz E (1989) Early development of locomotor behaviour in vervet monkeys. Am J Primatol 17:11–25

    Article  Google Scholar 

  • Witte H, Preuschoft H, Recknagel S (1991) Human body proportions explained on the basis of biomechanical principles. Z Morphol Anthropol 78:407–423

    Google Scholar 

  • Witte H, Preuschoft H, Fischer MS (2002) The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. Z Morphol Anthropol 83:221–233

    Google Scholar 

  • Witzel U, Preuschoft H (2008) The mechanical reasons of the internal structure of finger tips. Poster, presented at the Congress of the International Primatological Society, Edinburgh, UK

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  • Wood AR, Bebej RM, Manz CL, Begun DL, Gingerich PD (2002) Postcranial functional morphology of Hyracotherium (Equidae, Perissodactyla) and locomotion in the earliest horses. J Mamm Evol. doi:t0t007ht0914-0r0-9145-7

Download references

Acknowledgments

Our sincere thanks go to the reviewers, Prof. Dr. Ulrich Witzel (Bochum) and Prof. Dr. Andreas Christian (Flensburg), for very careful screening, ending up with precise suggestions, which have considerably improved our manuscript. We also want to thank the Deutsche Forschungsgemeinschaft. This article is publication number 127 of the Forschergruppe 533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Preuschoft.

Additional information

This article is a contribution to the special issue “Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preuschoft, H., Franzen, J.L. Locomotion and biomechanics in Eocene mammals from Messel. Palaeobio Palaeoenv 92, 459–476 (2012). https://doi.org/10.1007/s12549-012-0103-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-012-0103-7

Keywords

Navigation