Skip to main content

Advertisement

Log in

Evolutionary morphology, cranial biomechanics and the origins of tarsiers and anthropoids

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

During the Time of Messel, the dominant groups of primates were the adapiform strepsirhines and the tarsiiform haplorhines, both important in discussions of anthropoid origins. Living tarsiers are at the centre of these ideas as one school of thought, representing the Tarsier-Anthropoid Hypothesis, holds they are the sister-group of Anthropoidea. The Tarsier-Tarsiiform Hypothesis, however, maintains that tarsiers are phyletically nested among the (paraphyletic) fossil tarsiiforms (∼omomyids). Orbital morphology is crucial to this debate: the possibility that the postorbital septa of tarsiers and anthropoids are synapomorphic and that it evolved in their last common ancestor to insulate the eyeballs from muscular interference. Our biomechanical model of forces acting on the enormous eyeballs and orbits of tarsiers especially during locomotion provides a strong counterargument to this proposition. The uniquely specialised orbita of Tarsius, which include prominent circumorbital flanges that are continuous with the postorbital septum, are designed to sustain enormous inertial loads transmitted by the eyeballs during the acceleration and deceleration phases of powerful leaping, for which Tarsius is also famous. The eyeballs are thus secured, and pressure absorbed by the retina during acceleration is minimised, by enlarging its surface area of contact with a “walled socket”, i.e., by the extra-fossa expansion of these flanges. The tarsier septum is, therefore, a form–function convergence on the small-eyed anthropoid condition. Several related Eocene tarsiiforms exhibit a precisely Tarsius-like morphology of the rostrum relating to eyeball hypertrophy, although they lack the exaggerated circumorbital and septal morphology and only rarely exhibit postcranial features indicative of super leaping abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anemone RL, Covert HH (2000) New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a Middle Eocene primate. J Hum Evol 38:607–633

    Article  Google Scholar 

  • Bajpai S, Kay RF, Williams BA, Das DP, Kapur VV, Tiwari NB (2008) The oldest Asian record of Anthropoidea. Proc Natl Acad Sci USA 105:11093–11098

    Article  Google Scholar 

  • Beard KC, MacPhee RDE (1994) Cranial anatomy of Shoshonius and the antiquity of Anthropoidea. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 55–97

    Google Scholar 

  • Beard KC, Krishtalka L, Stucky RK (1991) First skulls of the early Eocene primate Shoshonius cooperi and the anthropoid-tarsier dichotomy. Nature 349:64–67

    Article  Google Scholar 

  • Bock WJ (1990) From biologische Anatomie to ecomorphology. Neth J Zool 40:254–277

    Article  Google Scholar 

  • Burger BJ (2010) Skull of the Eocene primate Omomys carteri from western North America. Paleon Contrib 2, paleo.ku.edu/contributions. http://hdl.handle.net/1808/6360

  • Burmeister H (1846) Beiträge zur näheren Kenntniss der Gattung Tarsius. George Reimer, Berlin

    Google Scholar 

  • Cartmill M (1980) Morphology, function, and evolution of the anthropoid postorbital septum. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 243–274

    Google Scholar 

  • Cartmill M (1994) Anatomy, antinomies, and the problem of anthropoid origins. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 549–566

    Google Scholar 

  • Cartmill M, Kay RF (1978) Craniodental morphology, tarsier affinities, and primate suborders. In: Chivers DJ, Joysey KA (eds) Recent advances in primatology. Academic Press, London, pp 205–214

    Google Scholar 

  • Cartmill M, MacPhee RDE, Simons EL (1981) Anatomy of the temporal bone in early anthropoids, with remarks on the problem of anthropoid origins. Am J Phys Anthropol 56:1–21

    Article  Google Scholar 

  • Castenholtz E (1984) The eye of Tarsius. In: Niemitz C (ed) Biology of tarsiers. Gustav Fischer, Stuttgart, pp 303–318

    Google Scholar 

  • Chaimanee Y, Lebrun R, Yamee C, Jaeger J-J (2011) A new Middle Miocene tarsier from Thailand and the reconstruction of its orbital morphology using a geometric– morphometric method. Proc R Soc Lond B 278:1956–1963

    Article  Google Scholar 

  • Cope ED (1882) An anthropomorphous lemur. Am Nat 16:73–74

    Google Scholar 

  • Cummings JR, Muchlinski MN, Kirk EC, Rehorek SJ, DeLeon VB et al (2012) Eye size at birth in prosimian primates: life history correlates and growth patterns. PLoS One 7(5):e36097

    Article  Google Scholar 

  • Curtis N, Witzel U, Fitton L, O’Higgins P, Fagan M (2011) The mechanical significance of the temporal fascia in Macaca fascicularis: An investigation using finite Element Analysis. Anat Rec 294:1178–1190

    Article  Google Scholar 

  • Dagosto M (1993) Postcranial anatomy and locomotor behavior in Eocene primates. In: Gebo DL (ed) Postcranial adaptation in nonhuman primates. Northern Illinois University Press, DeKalb, pp 199–219

    Google Scholar 

  • Dagosto M, Gebo DL (1994) Postcranial anatomy and the origin of the Anthropoidea. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 567–593

    Google Scholar 

  • Dagosto M, Gebo DL, Beard KC (1999) Revision of the Wind River faunas, early Eocene of central Wyoming. Part 14. Postcranium of Shoshonius cooperi (Mammalia: Primates). Ann Carnegie Mus 68:175–211

    Google Scholar 

  • Demes B, Günther MM (1989a) Biometrics and allometric scaling in primate locomotion and morphology. Folia Primatol 53:125–141

    Article  Google Scholar 

  • Demes B, Günther MM (1989b) Wie die Körpermasse den Springstil von Halbaffen und deren Proportionen bestimmt. Z Morph Anthropol 77:209–225

    Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic Press, New York

    Google Scholar 

  • Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH (2009) Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology. PLoS One 4(e5723):1e27

    Google Scholar 

  • Gebo DL (1998) Foot morphology and locomotor adaptation in Eocene primates. Folia Primatol 50:3–41

    Article  Google Scholar 

  • Gingerich PD, Franzen JL, Habersetzer J (2012) Darwinius masillae is a Haplorhine – Reply to Williams et al. 2010. J Hum Evol 59:574–579

    Article  Google Scholar 

  • Ginsburg L, Mein P (1987) Tarsius thailandica nov. sp., premier Tarsiidae (Primates, Mammalia) fossile d’Asie. CR Acad Sci 304:1213–1215

    Google Scholar 

  • Godinot M, Dagosto M (1983) The astragalus of Necrolemur (Primates, Microchoerinae). J Paleontol 57:1321–1324

    Google Scholar 

  • Grand TI, Lorenz R (1968) Functional analysis of thre hip joint in Tarsius bancanus (Horesfield, 1821) and Tarsius syrichta (Linnaeus, 1758). Folia Primatol 9:161–181

    Article  Google Scholar 

  • Grassé P-P (1968) Traité de zoologie, anatomie, systématique, biologie. Tome XVI, Fascicule 2: Mammifères. Musculature. Masson, Paris

  • Groves C, Shekelle M (2010) The genera and species of Tarsiidae. Int J Primatol 31:1071–1082

    Article  Google Scholar 

  • Gunnell G, Rose KD (2002) Tarsiiformes: evolutionary history and adaptation. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 45–82

    Google Scholar 

  • Günther M-M (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten an mehreren Halbaffenarten. Dissertation, Freie Universität Berlin

  • Günther MM, Preuschoft H, Ishida H, Nakano Y (1992) Can prosimian-like leaping be considered a preadaptation to bipedal walking in hominids? In: Matano S, Tuttle RH, Ishida H, Goodman M (eds) Topics in primatology, Vol, 3 Evolutionary Biology, Reproductive Endocrinology and Virology. University of Tokyo Press, Tokyo, pp 153–165

    Google Scholar 

  • Gursky SL (2007) The spectral tarsier. Pearson-Prentice Hall, Upper Saddle River

    Google Scholar 

  • Gursky-Doyen S (2010) The Tarsiidae. In: Bearder S, Campbell C, Fuentes A, MacKinnon K, Panger M (eds) Primates in perspective, 2nd edn. Oxford University Press, Oxford, pp 79–90

    Google Scholar 

  • Haubold H, Hellmund M (1998) Das Geiseltalmuseum am Institut für Geologische Wissenschaften. Veröffentlichungen der Akad Sgl und Mus der Martin-Luther Univ Halle-Wittenberg, pp 1–39

  • Heesy CP, Ross CF (2001) Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. J Hum Evol 40:111–149

    Article  Google Scholar 

  • Heesy CP, Ross CF, Demes B (2007) Oculomotor stability and the functions of the postorbital bar and septum. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 357–283

    Google Scholar 

  • Hershkovitz P (1977) Living New World Monkeys (Platyrrhini) with an Introduction to Primates, vol 1. University of Chicago Press, Chicago

    Google Scholar 

  • Hill WCO (1955) Primates: Comparative Anatomy and Taxonomy. II. Haplorhini: Tarsioidea. A Monograph. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Hubrecht AAW (1897) The descent of the primates. Charles Scribner, New York

    Google Scholar 

  • Jeffery N, Davies K, Kockenberger W, Williams S (2007) Craniofacial growth in fetal Tarsius bancanus: brains, eyes and nasal septa. J Anat 210:703–722

    Article  Google Scholar 

  • Kay RF, Kirk EC (2000) Osteological evidence for the evolution of activity pattern and visual acuity in primates. Am J Phys Anthropol 113:235–262

    Article  Google Scholar 

  • Kay RF, Ross CF, Williams BA (1997) Rethinking anthropoid origins. Science 275:797–804

    Article  Google Scholar 

  • Kirk EC (2006) Eye morphology in cathemeral lemurids and other mammals. Folia Primatol 77:27–49

    Article  Google Scholar 

  • Le Gros Clark WE (1934) Early forerunners of man. Bailliere, Tindall and Cox, London

    Google Scholar 

  • Le Gros Clark WE (1959) The antecedents of man. University of Edinburgh Press, Edinburgh

    Google Scholar 

  • MacPhee RDE, Cartmill M (1986) Basicranial structures and primate systematics. In: Swindler DR, Erwin J (eds) Comparative primate biology, volume 1: systematics, evolution, and anatomy. Alan R Liss, New York, pp 219–275

    Google Scholar 

  • Maiolino S, Boyer DM, Bloch JI, Gilbert CC, Groenke J (2012) Evidence for a grooming claw in a North American adapiform primate: Implications for Anthropoid Origins. PLoS One 7(1):e29135. doi:10.1371/journal.pone.0029135

    Article  Google Scholar 

  • Marivaux L, Pierre-Olivier A, Baqri SRH, Benammi M, Chaimanee Y, Crochet J-Y, de Franceschi D, Iqbal N, Jaeger J-J, Métais G, Roohi G, Welcomme J-L (2005) Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): Data on early anthropoid evolution and biogeography. Proc Natl Acad Sci USA 102:8436–8441

    Article  Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Chapman and Hall, London

    Google Scholar 

  • Merker S, Groves C (2010) Tarsius lariang: A new primate species from Western Central Sulawesi. Int J Primatol 27:265–485

    Google Scholar 

  • Musser GG, Dagosto M (1987) The identity of Tarsius pumilus, a pygmy species endemic to the montane mossy forests of central Sulawesi. Am Mus Nov 2867:1–53

    Google Scholar 

  • Napier JR, Napier PH (1967) A Handbook of living primates. Morphology, ecology and behaviour of nonhuman primates. Academic Press, London

    Google Scholar 

  • Napier JR, Walker A (1968) Vertical clinging and leaping – a newly recognized category of locomotor behavuour of primates. Folia Primatol 6:204–219

    Article  Google Scholar 

  • Niemitz C (1977) Zur Funktionsmorphologie und Biometrie der Gattung Tarsius, Storr, 1780 (Mammalia, Primates, Tarsiidae). Cour Forsch-Inst Senckenberg 25:1–161

    Google Scholar 

  • Niemitz C (1979) Relationships among anatomy, ecology and behavior: A model developed in the genus Tarsius with thoughts about phylogenetic mechanisms and adaptive interactions. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. Gustav Fischer, New York, pp 119–137

    Google Scholar 

  • Niemitz C (1984a) Biology of tarsiers. Gustav Fischer, Stuttgart

    Google Scholar 

  • Niemitz C (1984b) Locomotion and posture of Tarsius bancanus. In: Niemitz C (ed) Biology of tarsiers. Gustav Fischer, New York, pp 191–225

    Google Scholar 

  • Niemitz C (2010) Progreditur ordinara saltando et retrorsum…Normally proceeds in a leaping fashion, and backwards…. Int J Primatol 31:941–957

    Article  Google Scholar 

  • Peters A, Preuschoft H (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In: Niemitz C (ed) Biology of tarsiers. Gustav Fischer, New York, pp 227–255

    Google Scholar 

  • Preuschoft H, Witzel U (2004) A biomechanical approach to craniofacial shape in primates using FESA. Ann Anat 186:397–404

    Article  Google Scholar 

  • Preuschoft H, Witzel U (2005) Functional shape of the skull in vertebrates: Which forces determine skull morphology in lower primates and ancestral synapsids? Anat Rec 283A:402–413

    Article  Google Scholar 

  • Radinsky LB (1967) The oldest primate endocast. Am J Phys Anthropol 27:385–388

    Article  Google Scholar 

  • Roberts M, Kohn F (1993) Habitat use, foraging behavior and activity patterns in reproducing western tarsiers, Tarsius bancanus, in captivity: a management synthesis. Zoo Biol 12:217–232

    Article  Google Scholar 

  • Rose KD, Rana RS, Sahni A, Kumar K, Missiaen O, Singh L, Smith T (2009) Early Eocene primates from Gujarat, India. J Human Evol 56:366–404

    Article  Google Scholar 

  • Rosenberger AL (1985) In favor of the Necrolemur-Tarsius hypothesis. Folia Primatol 45:179–194

    Article  Google Scholar 

  • Rosenberger AL (2010a) Platyrrhines, PAUP, parallelism, and the long lineage hypothesis: a reply to Kay et al. (2008). J Hum Evol 59:214–217

    Google Scholar 

  • Rosenberger AL (2010b) The skull of Tarsius: functional morphology, eyeballs, and the non-pursuit predatory lifestyle. Int J Primatol 31:1032–1054

    Article  Google Scholar 

  • Rosenberger AL (2011a) Evolutionary morphology, platyrrhine evolution and systematics. Anat Rec 294:1955–1974

    Article  Google Scholar 

  • Rosenberger AL (2011b) Strigorhysis: another large-eyed Eocene North American fossil tarsiiform. Anat Rec 294:797–812

    Article  Google Scholar 

  • Rosenberger AL, Hogg R, Wong SM (2008) Rooneyia, postorbital closure, and the beginnings of the age of Anthropoidea. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 325–346

    Chapter  Google Scholar 

  • Ross C (1994) The craniofacial evidence for anthropoid and tarsier relationships. In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum Press, New York, pp 469–547

    Google Scholar 

  • Rossie JB, Ni X, Beard KC (2006) Cranial remains of an Eocene tarsier. PNAS 103:4381–4385

    Article  Google Scholar 

  • Schlosser M (1907) Beitrag zur Osteologie und systematischen Stellung der Gattung Necrolemur, sowie zur Stammesgeschichte der Primaten überhaupt. N Jb Mineral Geol Paleontol Festband 197–225

  • Schmid P (1979) Evidence of microchoerine evolution from Diesldorf (Zürich region, Switzerland): a preliminary report. Folia Primatol 31:301–311

    Article  Google Scholar 

  • Schmid P (1982) Die systematische Revision der europischen Microchoeridae Lydekker, 1887 (Omomyiformes Primates). University of Zürich, Zürich

    Google Scholar 

  • Schultz AH (1940) The size of the orbit and of the eye in primates. Am J Phys Anthropol 26:398–408

    Article  Google Scholar 

  • Seiffert ER, Simons EL, Clyde WC, Rossie JB, Attia Y, Bown TM, Chatrath P, Mathison ME (2005) Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. Science 310:300–304

    Article  Google Scholar 

  • Shekelle M, Gursky-Doyen SL (2010) Building bridges toward a new understanding of Tarsier diversity. Guest Editors. Int J Primatol 31(6):937–1207

    Article  Google Scholar 

  • Simons EL (1960) Notes on Eocene tarsioids and a revision of some Necrolemurinae. Bull Br Mus Nat Hist Geol 5:43–70

    Google Scholar 

  • Simons EL (1963) A critical appraisal of Tertiary primates. In: Buettner-Janusch (ed) Evolutionary and genetic biology of primates. Academic Press, New York, pp 62–129

  • Simons EL (1972) Primate evolution, an introduction to man’s place in nature. Macmillan, New York

    Google Scholar 

  • Simons EL (2003) The fossil record of tarsier evolution. In: Wright PC, Simons EL, Gursky S (eds) Tarsiers: past, present, and future. Rutgers University Press, New Brunswick, pp 9–34

    Google Scholar 

  • Simons EL, Rasmussen DT (1989) Cranial morphology of Aegyptopithecus and Tarsius and the question of the tarsier-anthropoidean clade. Am J Phys Anthropol 79:1–23

    Article  Google Scholar 

  • Simons EL, Russell D (1960) Notes on the cranial anatomy of Necrolemur. Breviora 127:1–14

    Google Scholar 

  • Spatz WB (1965) Die Bedeutung der Augen für die sagittale Gestaltung des Schädels von Tarsius (Prosimiae, Tarsiiformes). Folia Primatol 9:22–40

    Article  Google Scholar 

  • Sprankel H (1965) Untersuchungen an Tarsius. I. Morphologies des Schwanzes nebst ethologischen Bemerkungen. Folia Primatol 3:153–188

    Article  Google Scholar 

  • Starck D (1975) The development of the chondrocranium in Primates. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates. Academic Press, New York, pp 127–155

    Chapter  Google Scholar 

  • Stehlin HG (1912) Die Säugetiere des schweizerischen Eocänes, Adapis. Abh Schweiz Paläont Gesell 41:1299–1552

    Google Scholar 

  • Strassen O (1877) Brehms Thierleben. Allgemeine Kunde des Tierreichs. 4th edition, vol.3 Säugetiere 3. Bibliographisches Institut, Leipzig

  • Szalay FS (1976) Systematics of the Omomyidae (Tarsiiformes, Primates), taxonomy, phylogeny and adaptations. Bull Am Mus Nat Hist 156:157–449

    Google Scholar 

  • Szalay FS, Delson E (1979) Evolutionary history of the Primates. Academic Press, New York

    Google Scholar 

  • Teilhard de Chardin P (1921) Les mammifères de l’éocène inférieur français et leur gisements. Ann Paléont 10:1–114

    Google Scholar 

  • Thalmann U (1994) Die Primaten aus dem eozänen Geiseltal bei Halle/Saale (Deutschland). Cour Forsch-Inst Senckenberg 175:1–161

    Google Scholar 

  • Williams BA, Kay RF, Kirk EC, Ross CF (2010) Darwinius masillae is a strepsirhine: a reply to Franzen et al. (2009). J Hum Evol 59:567–573

    Article  Google Scholar 

  • Wilson DE, Reeder MD (1993) Mammal species of the world, 2nd edn. Smithosnian Institution Press, Washington

    Google Scholar 

  • Witzel U, Preschoft H (2002) Function-dependent shape characteristics of the human skull. Anthrop Anz 2:113–135

    Google Scholar 

  • Witzel U, Preschoft H (2004) The functional structure of the facial skull in hominoids. Folia Primatol 75:219–252

    Article  Google Scholar 

  • Witzel U, Preuschoft H, Sick H (2004) The role of the zygomatic arch in the statics of the skull and its adaptive shape. Folia Primatol 75:202–218

    Article  Google Scholar 

  • Wright PC, Simons EL, Gursky SL (2010) Tarsiers. Past, present and future. Rutgers University Press, New Brunswick

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the organisers and generous hosts of The 22nd International Senckenberg Conference, The World at the Time of Messel: Puzzles in Paleobiology, Paleoenvironment and the History of Early Primates. Also, to all the participants, who helped make it an exceptionally stimulating and enjoyable event. We are grateful to Carsten Neimitz for sharing his knowledge of the older Tarsius literature, as well as other vital favours. Thanks also to Stacey McCarthy for assistance with illustrations, and to Tim Smith and Valerie De Leon for sharing their critically important evidence, and thinking, on the ontogeny of tarsier cranial morphology. Very important editorial suggestions were made by Kenneth D. Rose and Sébastien Couette. We are deeply grateful to them, but take full responsibility for the remaining errors committed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Rosenberger.

Additional information

This article is a contribution to the special issue “Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, A.L., Preuschoft, H. Evolutionary morphology, cranial biomechanics and the origins of tarsiers and anthropoids. Palaeobio Palaeoenv 92, 507–525 (2012). https://doi.org/10.1007/s12549-012-0098-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-012-0098-0

Keywords

Navigation