Skip to main content

Advertisement

Log in

Sub/fossil resin research in the 21st Century: trends and perspectives

  • Review Article
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Within the last few decades technological advances such as the Internet and new imaging techniques (e.g., computed tomography and synchrotron scanning) have revolutionized how we do research in the 21st century. High-quality publications resulting from international, interdisciplinary collaborations are now commonplace, though there is still much scope for improvement in certain branches of amber palaeobiology. Here, I review what I consider to be some of the most important trends in amber research over the past decade or so and highlight areas deserving of more focussed input. Topics covered include summaries of our current knowledge of palaeodiversity of the major world deposits, important new Cenozoic and Mesozoic amber deposits, palaeo-taxonomy (and over-interpretation of fossil inclusions), advances in imaging technologies, quantitative palaeoecology, and climate change and biogeography. The potential scientific value of inclusions in copal, a source of sub-fossils that is often considered unimportant due to its relatively young age, is also briefly discussed.

Kurzfassung

Innerhalb der letzten Jahrzehnte haben technologischer Fortschritt, bspw. mit Internet und neuen bildgebenden Verfahren, wie der Computertomographie bzw. der Synchrotron-Computertomographie, die Forschungsarbeit zu Beginn des 21. Jahrhunderts revolutioniert. Publikationen höchster Qualität aus internationaler und interdisziplinärer Zusammenarbeit sind alltäglich geworden, obwohl es in einigen Bereichen der Bernstein-Paläobiologie noch Verbesserungsmöglichkeiten gibt. In der vorliegenden Arbeit fasse ich die aus meiner Sicht wichtigsten Trends in der Bernsteinforschung der letzten Jahrzehnte zusammen, wobei ein Schwerpunkt auf Bereiche gelegt wurde, die einen stärkeren Fokus verdienen. Themen sind u. a. Zusammenfassungen zur Paläobiodiversität der weltweit bedeutendsten Lagerstätten, einige wichtige neue känozoische und mesozoische Lagerstätten, “Paläo-Taxonomie” (und die Überinterpretation von Bernsteininklusen), Fortschritte im Bereich bildgebender Verfahren, die quantitative Paläoökologie sowie Klimaänderung und die Biogeographie. Ebenfalls kurz diskutiert wird das wissenschaftliche Potential von Inklusen in subfossilem Kopal, welche aufgrund ihres relativ jungen Alters, oft als nicht bedeutend betrachtet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht, A., and L. Kaila. 1997. Variation of wing venation in Elachistidae (Lepidoptera: Gelechioidea): methodology and implications to systematics. Systematic Entomology 22: 185–198.

    Article  Google Scholar 

  • Allmon, W.D. 2013. Species, speciation and palaeontology up to the modern synthesis: persistent themes and unanswered questions. Palaeontology 56: 1199–1223.

    Article  Google Scholar 

  • Antoine, P.-O., D. De Franceschi, J.J. Flynn, A. Nel, P. Baby, M. Benammi, Y. Calderón, N. Espurt, A. Goswami, and R. Salas-Gismondi. 2006. First amber from western Amazonia reveals neotropical diversity during the middle miocene. Proceedings of the National Academy of Science USA 103: 13595–13600.

    Article  Google Scholar 

  • Arillo, A. 2007. Paleoethology: fossilized behaviors in amber. Geolica Acta 5: 57–64.

    Google Scholar 

  • Ascaso, C., J. Wierzchos, C. Corral, R. López del Valle, and J. Alonso. 2003. New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber. Journal of Paleontology 77: 1182–1192.

    Article  Google Scholar 

  • Austin, J.J., A.J. Ross, A.B. Smith, R.A. Fortey, and R.H. Thomas. 1997. Problems of reproducibility—does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society of London. Series B 264: 467–474.

    Article  Google Scholar 

  • Azar, D., A. Nel, and A. Waller. 2009. Two new ptiloneuridae from Columbian copal (Psocodea: Psocomorpha). Denisia 26: 21–28.

    Google Scholar 

  • Baranov, V., and E. Perkovsky. 2013. New chironomids from eocene sakhalinian amber (Diptera: Chironomidae: Orthocladiinae). Terrestrial Arthropod Reviews 6: 61–69.

    Article  Google Scholar 

  • Baylac, M., C. Villemant, and G. Simbolotti. 2003. Combining geometric morphometrics with pattern recognition for the investigation of species complexes. Biological Journal of the Linnean Society 80: 89–98.

    Article  Google Scholar 

  • Bickel, D.J. 2009. The first species described from Cape York amber, Australia: Chaetogonopteron bethnorrisae n.sp. (Diptera: Dolichopodidae). Denisia 26: 35–39.

    Google Scholar 

  • Bonato, L., G.D. Edgecombe, and A. Minelli. 2013. Geophilomorph centipedes from the Cretaceous amber of Burma. Palaeontology. doi:10.1111/pala.12051.

    Google Scholar 

  • Bosselaers, J., M. Dierick, V. Cnudde, B. Masschaele, L. Van Hoorebeke, and P. Jacobs. 2010. High-resolution X-ray computed tomography of an extant new Donuea (Araneae: Liocranidae) species in Madagascan copal. Zootaxa 2427: 25–35.

    Article  Google Scholar 

  • Boucot, A.J., and G.O. Poinar Jr. 2010. Fossil behavior compendium. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Chao, A., R.K. Colwell, C.-W. Lin, and N. Gotelli. 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90: 1125–1133.

    Article  Google Scholar 

  • Chatzimanolis, S., A.F. Newton, C. Soriano, and M.S. Engel. 2013. Remarkable stasis in a phloeocharine rove beetle from the Late Cretaceous of New Jersey (Coleoptera: Staphylinidae). Journal of Paleontology 87: 177–182.

    Article  Google Scholar 

  • Clark, N.D.L. 2010. Amber: tears of the gods. Edinburgh: Dunedin Academic Press.

    Google Scholar 

  • Clark, N.D.L., and C.J. Daly. 2010. Using confocal laser scanning microscopy to image trichome inclusions in amber. Journal of Paleontological Techniques 8: 1–7.

    Google Scholar 

  • Coram, R., and J.E. Jepson. 2012. Fossil insects of the Purbeck Formation of southern England: Palaeoentomology from the dawn of the Cretaceous. Monograph Series, vol. 3. Manchester: Siri Scientific Press.

    Google Scholar 

  • Colwell, R.K. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates. Accessed Mar 2014.

  • Dammer, J., F. Weyda, J. Benes, V. Sopko, I. Jandejsek, and J. Pflegerova. 2013. High resolution radiography of ambers with pixel detectors. Journal of Instrumentation 8: C03024.

    Article  Google Scholar 

  • Dlussky, G.M., and A.P. Rasnitsyn. 2009. Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontological Journal 43: 1024–1042.

    Article  Google Scholar 

  • DePalma, R., F. Cichocki, M. Dierick and R. Feeney. 2010. Preliminary notes on the first recorded amber insects from the Hell Creek Formation. The Journal of Paleontological Sciences JPS: C.10.0001.

  • Dierick, M., V. Cnudde, B. Masschaele, J. Vlassenbroeck, L. Van Hoorebeke, and P. Jacobs. 2007. Micro-CT of fossils preserved in amber. Nuclear Instruments and Methods in Physics Research Section A. doi:10.1016/j.nima.2007.05.030.

    Google Scholar 

  • DuBois, M.B., and J.S. LaPolla. 1999. A preliminary review of Colombian ants (Hymenoptera: Formicidae) preserved in copal. Entomological News 110: 162–172.

    Google Scholar 

  • Dunlop, J.A., D. Penney, N. Daluge, P. Jäger, A. McNeil, R. Bradley, P.J. Whithers, and R.F. Preziosi. 2011. Computed tomography recovers data from historical amber: An example from huntsman spiders. Naturwissenschaften 98: 519–527.

    Article  Google Scholar 

  • Dunlop, J.A., S. Wirth, D. Penney, A. McNeil, R.S. Bradley, P.J. Withers, and R.F. Preziosi. 2012. A minute fossil phoretic mite recovered by X-ray computed tomography. Biology Letters 8: 457–460.

    Article  Google Scholar 

  • Edgecombe, G.D., V. Vahtera, S.R. Stock, A. Kallonen, X. Xiao, A. Rack, and G. Giribet. 2012. A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: Synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set. Zoological Journal of the Linnean Society 166: 768–786.

    Article  Google Scholar 

  • Engel, M.S. 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History 259: 1–192.

    Article  Google Scholar 

  • Eskov, K.Y. 1992. Archaeid spiders from Eocene Baltic amber (Chelicerata: Araneida: Archaeidae) with remarks on the so called ‘‘Gondwanan’’ ranges of Recent taxa. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 185: 311–328.

    Google Scholar 

  • Fedotova, Z.A., and E.E. Perkovsky. 2007. Problems and prospects in the study of fossil gall midges. Reply to the criticism of M. Jaschhof. Paleontological Journal 41: 696–702.

    Article  Google Scholar 

  • Gerlach, J., M. Samways, and J. Pryke. 2013. Terrestrial invertebrates as bioindicators: An overview of available taxonomic groups. Journal of Insect Conservation 17: 831–850.

    Article  Google Scholar 

  • Gilbert, M.T.P., W. Moore, L. Melchior, and M. Worobey. 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PLoS One 2(3): e272.

    Article  Google Scholar 

  • Girard, V., and S.M. Adl. 2011. Amber microfossils: On the validity of species concept. Comptes Rendus Palevol 10: 189–200.

    Article  Google Scholar 

  • Girard, V., D. Neraudeau, S.M. Adl, and G. Breton. 2011. Protist-like inclusions in amber, as evidenced by charentes amber. European Journal of Protistology 47(2): 59–66.

    Article  Google Scholar 

  • Girard, V., G. Breton, V. Perrichot, M.Le Bilotte, J. Loeuff, A. Nel, M. Philippe, and F. Thevenard. 2013. The Cenomanian amber of Fourtou (Aude, southern France): Taphonomy and palaeoecological implications. Annales de Paléontologie 99: 301–315.

    Article  Google Scholar 

  • Greco, M.K., P.M. Welz, M. Siegrist, S.J. Ferguson, P. Gallmann, D.W. Roubik, and M.S. Engel. 2011. Description of an ancient social bee trapped in amber using diagnostic radioentomology. Insectes Sociaux 58: 487–494.

    Article  Google Scholar 

  • Grimaldi, D.A., A. Shedrinsky, A.J. Ross, and N.S. Baer. 1994. Forgeries of fossils in ‘amber’: History, identification and case studies. Curator 37: 251–274.

    Article  Google Scholar 

  • Grund, M. 2006. Chironomidae (Diptera) in Dominican amber as indicators for ecosystem stability in the Caribbean. Palaeogeography Palaeoclimatology Palaeoecology 241: 410–416.

    Article  Google Scholar 

  • Hand, S., M. Archer, D. Bickel, P. Creaser, M. Dettmann, H. Godthelp, A. Jones, B. Norris, and D. Wicks. 2010. Australian amber. In 2010, ed. D. Penney, 69–79. Manchester: Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press.

    Google Scholar 

  • Haug, J.T., C. Haug, A. Maas, S.R. Fayers, N.H. Trewin, and D. Waloszek. 2009. Simple 3D images from fossil and recent micromaterial using light microscopy. Journal of Microscopy 233: 93–101.

    Article  Google Scholar 

  • Haug, J.T., C.H.G. Müller, and A. Sombke. 2013. A centipede nymph in Baltic amber and a new approach to document amber fossils. Organisms Diversity and Evolution 13: 425–432.

    Article  Google Scholar 

  • Hebsgaard, M.B., M.J. Phillips, and E. Willerslev. 2005. Geologically ancient DNA: Fact or artefact? Trends in Microbiology 13: 212–220.

    Article  Google Scholar 

  • Heethoff, M., L. Helfen, and R.A. Norton. 2009. Description of Neoliodes dominicus n. sp. (Acari: Oribatida) from Dominican amber, aided by synchrotron X-ray microtomography. Journal of Paleontology 83: 153–159.

    Article  Google Scholar 

  • Henderickx, H., and M. Boone. 2014. The first fossil Feaella Ellingsen, 1906, representing an unexpected pseudoscorpion family in Baltic amber (Pseudoscorpiones, Feaellidae). Entomo-Info 25: 5–11.

    Google Scholar 

  • Henderickx, H., V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, and L. Van Hoorebeke. 2006. Description of a new fossil Pseudogarypus (Pseudoscorpiones: Pseudogarypidae) with the use of X-ray micro-CT to penetrate opaque amber. Zootaxa 1305: 41–50.

    Google Scholar 

  • Henderickx, H., P. Tafforeau and C. Soriano. 2012. Phase-contrast synchrotron microtomography reveals the morphology of a partially visible new Pseudogarypus in Baltic amber (Pseudoscorpiones: Pseudogarypidae). Palaeontologia Electronica, 15(2): 11p.

  • Henderickx, H., J. Bosselaers, E. Pauwels, L. Van Hoorebeke and M. Boone. 2013. X-ray micro-CT reconstruction reveals eight antennomeres in a new fossil taxon that constitutes a sister clade to Dundoxenos and Triozocera (Strepsiptera: Corioxenidae). Palaeontologia Electronica, 16(3): 16p.

  • Henwood, A.A. 1993. Ecology and taphonomy of Dominican Republic amber and its inclusions. Lethaia 26: 237–245.

    Article  Google Scholar 

  • Hinojosa-Díaz, I.A., and M.S. Engel. 2007. A new fossil orchid bee in Colombian copal (Hymenoptera: Apidae). American Museum Novitates 3589: 1–7.

    Article  Google Scholar 

  • Hoffeins, C., and H.W. Hoffeins. 2004. Untersuchungen über die Häufigkeit von Inklusen in Baltischem und Bitterfelder Bernstein (Tertiär, Eozän) aus unselektierten Aufsammlungen unter besonderer Berücksichtigung der Ordnung Diptera. Studia Dipterologica 10: 381–392.

    Google Scholar 

  • Hoffeins, C., and H.W. Hoffeins. 2013. Diptera in Baltic amber—the most frequent order within arthropod inclusions. Abstracts of the 6th International Congress on Fossil Insects Arthropods and Amber, Byblos, Lebanon 2013: 43–44.

    Google Scholar 

  • Hünefeld, F., H. Pohl, B. Wipfler, F. Beckmann, and R.G. Beutel. 2011. The male postabdomen and genital apparatus of †Mengea tertiaria, a strepsipteran amber fossil (Insecta). Journal of Zoological Systematics and Evolutionary Research 49: 298–308.

    Article  Google Scholar 

  • Jaschhoff, M. 2007. A neontologist’s review of two recently published articles on inclusions of Lestremiinae (Diptera: Cecidomyiidae) in Rovno amber. Paleontological Journal 41: 103–106.

    Article  Google Scholar 

  • Jennings, J.T., L. Krogmann, and S.L. Mew. 2012. Hyptia deansi sp. nov., the first record of Evaniidae (Hymenoptera) from Mexican amber. Zootaxa 3349: 63–68.

    Google Scholar 

  • Kania, I., W. Krzemiński, and A. Gil. 2012. Revision of the genus Palaeopoecilostola Meunier, 1899 (Diptera: Limoniidae) from Baltic amber (Upper Eocene). Polskie Pismo Entomologiczne 80: 747–764.

    Google Scholar 

  • Kaulfuss, U., D.E. Lee, J.M. Bannister, J.K. Lindqvist, J.G. Conran, D.C. Mildenhall, E.M. Kennedy, V. Perrichot, M. Maraun and A. Schmidt. 2013. Foulden Maar and South Island amber (New Zealand)—two exceptional windows into Southern Hemisphere Cenozoic terrestrial ecosystems. In Palaeobiology and geobiology of fossil Lagerstätten through Earth history, eds. Reitner et al., 84–89. Goettingen: Universitatsverlag Goettingen.

  • Kiecksee, A.P., U. Kaulfuss, D.E. Lee, E.-M. Sadowski, A. Schmidt and M. Maraun. 2013. Diversity of mites from New Zealand amber. In: Reitner et al. (eds) Palaeobiology and geobiology of fossil Lagerstätten through Earth history: 86–87 (poster abstract).

  • Kirejtshuk, A.G., and A. Nel. 2013. Current knowledge of Coleoptera (Insecta) from the Lowermost Eocene Oise amber. Insect Systematics & Evolution 44: 175–201.

    Article  Google Scholar 

  • Klass, K.-D., O. Zompro, N.P. Kristensen, and J. Adis. 2002. Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science 296: 1456–1459.

    Article  Google Scholar 

  • Klebs, R. 1910. Über Bersteineinschlüsse im allgemeinen und die Coleopteren meiner Bernsteinsammlung. Schriften der physikalisch-ökonomischen Gesellschaft Königsberg 51: 217–242.

    Google Scholar 

  • Labandeira, C.C. 2005. The fossil record of insect extinction: New approaches and future directions. American Entomologist 51: 14–29.

    Article  Google Scholar 

  • Labandeira, C.C., and J.J. Sepkoski Jr. 1993. Insect diversity in the fossil record. Science 261: 310–315.

    Article  Google Scholar 

  • Lak, M., Azar, D., Nel, A., Néraudeau, D., and Tafforeau, P. 2008. The oldest representative of the Trichomyiinae (Diptera: Psychodidae) from the Lower Cenomanian French amber studied with phase contrast synchrotron X-ray imaging. Invertebrate Systematic 22: 471–478.

    Article  Google Scholar 

  • Lak, M., Fleck, G., Azar, D., Engel, M.S., Kaddumi, H.F., Neraudeau, D., Tafforeau, P., and Nel, A. 2009. Phase contrast X-ray synchrotron microtomography and the oldest damselflies in amber (Odonata: Zygoptera: Hemiphlebiidae). Zoological Journal of the Linnean Society 156: 913–923.

    Article  Google Scholar 

  • Lehane, J.R., and A.A. Ekdale. 2013. Pitfalls, traps, and webs in ichnology: Traces and trace fossils of an understudied behavioral strategy. Palaeogeography, Palaeoclimatology, Palaeoecology 375: 59–69.

    Article  Google Scholar 

  • Liu, X., Y. Wang, C. Shih, D. Ren, and D. Yang. 2012. Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): Implications from a phylogeny combining fossil and extant taxa. PLoS One 7(7): e40345.

    Article  Google Scholar 

  • Liu, X., F. Hayashi, and D. Yang. 2014. Phylogeny of the family Sialidae (Insecta: Megaloptera) inferred from morphological data, with implications for generic classification and historical biogeography. Cladistics. doi:10.1111/cla.12071.

    Google Scholar 

  • MacLeod, N. 2013. The great extinctions: what causes them and how they shape life. London: Natural History Museum.

    Google Scholar 

  • Martínez-Delclòs, X., D.E.G. Briggs, and E. Peñalver. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 19–64.

    Article  Google Scholar 

  • Masure, E., J. Dejax, and G. De Ploëg. 2013. Blowin’ in the wind…100 Ma old multi-staged dinoflagellate with sexual fusion trapped in amber: Marine–freshwater transition. Palaeogeography, Palaeoclimatology, Palaeoecology 388: 128–144.

    Article  Google Scholar 

  • McKellar, R.C., and M.S. Engel. 2013. The first Mesozoic Leptopodidae (Hemiptera: Heteroptera: Leptopodomorpha), from Canadian Late Cretaceous amber. Historical Biology An International Journal of Palaeobiology. doi:10.1080/08912963.2013.838753.

    Google Scholar 

  • McKellar, R.C., and M.S. Engel. 2012. Hymenoptera in Canadian Cretaceous amber (Insecta). Cretaceous Research 35: 258–279.

    Article  Google Scholar 

  • McKellar, R.C., and A.P. Wolfe. 2010. Canadian amber. In Biodiversity of fossils in amber from the major world deposits, ed. D. Penney, 149–166. Manchester: Siri Scientific Press.

    Google Scholar 

  • McKellar, R.C., J.R.N. Glasier, and M.S. Engel. 2013a. New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber. Bulletin of Geosciences 88: 583–594.

    Article  Google Scholar 

  • McKellar, R.C., D.S. Kopylov, and M.S. Engel. 2013b. Ichneumonidae (Insecta: Hymenoptera) in Canadian Late Cretaceous amber. Fossil Record 16: 217–227.

    Article  Google Scholar 

  • McKellar, R.C., A.P. Wolfe, R. Tappert, and K. Muehlenbachs. 2008. Correlation of Grassy Lake and Cedar Lake ambers using infrared spectroscopy, stable isotopes, and palaeoentomology. Canadian Journal of Earth Sciences 45: 1061–1082.

    Article  Google Scholar 

  • McKellar, R.C., B.D.E. Chatterton, A.P. Wolfe, and P.J. Currie. 2011. A diverse assemblage of Late Cretaceous dinosaur and bird feathers from Canadian amber. Science 333: 1619–1622.

    Article  Google Scholar 

  • McKellar, R.C., B.D.E. Chatterton, A.P. Wolfe, and P.J. Currie. 2012. Response to Comment on “A diverse assemblage of Late Cretaceous dinosaur and bird feathers from Canadian amber”. Science 335: 796.

    Article  Google Scholar 

  • McNeil, A., R.S. Bradley, P.J. Withers and D. Penney. 2010. Imaging fossilised spiders in amber using lab-based phase contrast X-ray tomography. In: Stock, S.R (ed.) Developments in X-ray tomography VII. Proc. SPIE, San Diego, 7804: 78041Q1–7.

  • Mendez, L.F. 1997. On a new fossil Microcoryphia (Insecta: Apterygota) from South American copal. Boletim da Sociedade Portuguesa de Entomologia 168(VI–18): 245–251.

    Google Scholar 

  • Nohra, Y., D. Azar, R. Gèze, S. Maksoud, A. El-Samrani, and V. Perrichot. 2013. New Jurassic amber outcrops from Lebanon. Terrestrial Arthropod Reviews 6: 27–51.

    Article  Google Scholar 

  • Ohl, M. 2011. Aboard a spider—a complex developmental strategy fossilized in amber. Naturwissenschaften 98: 453–456.

    Article  Google Scholar 

  • Penney, D. 1999. Hypotheses for the Recent Hispaniolan spider fauna based on the Dominican Republic amber spider fauna. Journal of Arachnology 27: 64–70.

    Google Scholar 

  • Penney, D. 2002. Paleoecology of Dominican amber preservation—spider (Araneae) inclusions demonstrate a bias for active, trunk-dwelling faunas. Paleobiology 28: 389–398.

    Article  Google Scholar 

  • Penney, D. 2004. Cretaceous Canadian amber spider and the palpimanoidean nature of lagonomegopids. Acta Palaeontologica Polonica 49: 579–584.

    Google Scholar 

  • Penney, D. 2005. Importance of Dominican Republic amber for determining taxonomic bias of fossil resin preservation—a case study of spiders. Palaeogeography, Palaeoclimatology, Palaeoecology 223: 1–8.

    Article  Google Scholar 

  • Penney, D. 2007. A new fossil oonopid spider, in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. African Invertebrates 48: 71–75.

    Google Scholar 

  • Penney, D. 2008. Dominican amber spiders: a comparative palaeontological-neontological approach to identification, faunistics, ecology and biogeography. Manchester: Siri Scientific Press.

    Google Scholar 

  • Penney, D. 2009. A new spider family record for Hispaniola—a new species of Plectreurys (Araneae: Plectreuridae) in Miocene Dominican amber. Zootaxa 2144: 65–68.

    Google Scholar 

  • Penney, D. (ed.). 2010a. Biodiversity of fossils in amber from the major world deposits. Manchester: Siri Scientific Press.

    Google Scholar 

  • Penney, D. 2010b. The evolution of jumping spiders (Araneae: Salticidae): The palaeontological evidence. Peckhamia 81(8): 1–3.

    Google Scholar 

  • Penney, D. 2011. Grandoculidae: a new fossil spider family from the Upper Cretaceous of Canada. Bulletin of the British Arachnological Society 15: 179–180.

    Google Scholar 

  • Penney, D. 2012. Biodiversity of fossils in amber from the major world deposits. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 18: 615–622.

    Google Scholar 

  • Penney, D. 2013a. Palaeontology: interpretation and application of the spider fossil record. In Spider research in the 21st century: trends and perspectives, ed. D. Penney, 282–313. Manchester: Siri Scientific Press.

    Google Scholar 

  • Penney, D. 2013b. Predatory behaviour of Cretaceous social orb-weaving spiders: comment. Historical Biology: An International Journal of Palaeobiology (available online 10 December 2012: doi:10.1080/08912963.2012.747523).

  • Penney, D., and D. Green. 2011. Fossils in amber: remarkable snapshots of prehistoric forest life. Manchester: Siri Scientific Press.

    Google Scholar 

  • Penney, D., and J.E. Jepson. 2014. Fossil insects: an introduction to palaeoentomology, 224. Manchester: Siri Scientific Press. ISBN: 978-0-9574530-6-7.

    Google Scholar 

  • Penney, D., and A.M. Langan. 2006. Comparing amber fossils across the Cenozoic. Biology Letters 2: 266–270.

    Article  Google Scholar 

  • Penney, D., and D.E. Pérez-Gelabert. 2002. Comparison of the Recent and Miocene Hispaniolan spider faunas. Revista Iberica de Aracnologia 6: 203–223.

    Google Scholar 

  • Penney, D., and R.F. Preziosi. 2010. On inclusions in subfossil resins (copal). In Biodiversity of fossils in amber from the major world deposits, ed. D. Penney, 299–303. Manchester: Siri Scientific Press.

    Google Scholar 

  • Penney, D. and R.F. Preziosi. 2013. Sub-fossils in copal: an undervalued scientific resource. Proceedings of the International Amber Researcher Symposium (Deposits-Collections-The Market), Gdansk, Poland 2013, 38–43.

  • Penney, D., and R.F. Preziosi. 2014. Estimating fossil ant species richness in Eocene Baltic amber. Acta Palaeontologica Polonica 59: 927–929.

    Google Scholar 

  • Penney, D., and P.A. Selden. 2006. First fossil Huttoniidae (Araneae), in Late Cretaceous Canadian Cedar and Grassy Lake ambers. Cretaceous Research 27: 442–446.

    Article  Google Scholar 

  • Penney, D., and P.A. Selden. 2011. Fossil spiders: the evolutionary history of a mega-diverse order., 128. Manchester: Siri Scientific Press. ISBN: 978-0-9558636-5-3.

    Google Scholar 

  • Penney, D., C.P. Wheater, and P.A. Selden. 2003. Resistance of spiders to cretaceous–tertiary extinction events. Evolution 57: 2599–2607.

    Google Scholar 

  • Penney, D., M. Dierick, V. Cnudde, B. Masschaele, J. Vlasssenbroeck, L. Van Hoorebeke, and P. Jacobs. 2007. First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-ray computed tomography. Zootaxa 1623: 47–53.

    Google Scholar 

  • Penney, D., D.I. Green, A. McNeil, R. Bradley, Y.M. Marusik, P.J. Withers, and R.F. Preziosi. 2011. A new species of anapid spider (Arthropoda: Araneae: Anapidae) in Eocene Baltic amber, imaged using X-ray computed tomography. Zootaxa 2742: 61–68.

    Google Scholar 

  • Penney, D., J.A. Dunlop, and Y.M. Marusik. 2012a. Summary statistics for fossil spider species taxonomy. ZooKeys 192: 1–13.

    Article  Google Scholar 

  • Penney, D., A. McNeil, D.I. Green, R. Bradley, J.E. Jepson, P.J. Whithers, and R.F. Preziosi. 2012b. Ancient Ephemeroptera-Collembola symbiosis predicts contemporary phoretic associations. PLoS One 7(10): e47651.

    Article  Google Scholar 

  • Penney, D., A. McNeil, D.I. Green, R. Bradley, P.J. Whithers, and R.F. Preziosi. 2012c. The oldest fossil pirate spider (Araneae: Mimetidae), in Uppermost Eocene Indian amber, imaged using X-ray computed tomography. Bulletin of the British Arachnological Society 15: 299–302.

    Google Scholar 

  • Penney, D., D.I. Green, A. McNeil, R. Bradley, Y. Marusik, P.J. Whithers, and R.F. Preziosi. 2012d. A new species of Craspedisia (Araneae: Theridiidae) in Miocene Dominican amber, imaged using X-ray computed tomography. Paleontological Journal 46: 583–588.

    Article  Google Scholar 

  • Penney, D., D.I. Green, S.B. Titchener, B.G. Titchener, T.A. Brown, and R.F. Preziosi. 2012e. An unusual palaeobiocoenosis of (sub)fossil spiders in Colombian copal. Bulletin of the British Arachnological Society 15: 241–244.

    Google Scholar 

  • Penney, D., N.L. Evenhuis, and D.I. Green. 2013a. A new species of Proceroplatus (Diptera: Keroplatidae) in Miocene amber from the Dominican Republic. Zootaxa 3686: 593–599.

    Article  Google Scholar 

  • Penney, D., C. Wadsworth, D.I. Green, S.L. Kennedy, R.F. Preziosi, and T.A. Brown. 2013b. Extraction of inclusions from (sub)fossil resins with description of a new species of stingless bee (Apidae: Meliponini) in Colombian copal. Paleontological Contributions 7: 1–6.

    Google Scholar 

  • Penney, D., C. Wadsworth, G. Fox, S.L. Kennedy, R.F. Preziosi, and T.A. Brown. 2013c. Absence of ancient DNA in sub fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS One. doi:10.1371/journal.pone.0073150.

    Google Scholar 

  • Pérez-Gelabert, D.E. 2008. Arthropods of Hispaniola (Dominican Republic and Haiti): a checklist and bibliography. Zootaxa 1831: 1–530.

    Google Scholar 

  • Perkovsky, E.E. 2009. Differences in ant (Hymenoptera: Formicidae) species composition between weight fractions of Rovno amber. Paleontological Journal 43: 1087–1091.

    Article  Google Scholar 

  • Perkovsky, E.E. 2010. Participation of Germaraphis aphids (Homoptera: Aphidinea) in weight fractions of the Rovno amber and their syninclusions with ants. Vestnik Zoologii 44: 55–62.

    Google Scholar 

  • Perkovsky, E.E. 2011. Syninclusions of the Eocene winter ant Prenolepis henschei (Hymenoptera: Formicidae) and Germaraphis aphids (Hemiptera: Eriosomatidae) in the Late Eocene Baltic and Rovno ambers: some implications. Russian Entomological Journal 20: 303–313.

    Google Scholar 

  • Perkovsky, E.E., A.P. Rasnitsyn, A.P. Vlaskin, and M.V. Taraschuk. 2007. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates 47: 229–245.

    Google Scholar 

  • Perkovsky, E.E., A.P. Rasnitsyn, A.P. Vlaskin, and S.P. Rasnitsyn. 2010. Community structure in the amber forest as revealed by the study of the arthropod syninclusia in the Rovno amber (Late Eocene of Ukraine). Acta Geologica Sinica 84: 954–958.

    Article  Google Scholar 

  • Perkovsky, E.E., A.P. Rasnitsyn, A.P. Vlaskin, and S.P. Rasnitsyn. 2012. Contribution to the study of the structure of amber forest communities based on analysis of syninclusions in the Rovno Amber (Late Eocene of Ukraine). Paleontological Journal 46: 293–301.

    Article  Google Scholar 

  • Perreau, M., and P. Tafforeau. 2011. Virtual dissection using phase-contrast X-ray synchrotron microtomography: reducing the gap between fossils and extant species. Systematic Entomology 36: 573–580.

    Article  Google Scholar 

  • Perrichot, V., J. Ortega-Blanco, R.C. McKellar, X. Delclòs, D. Azar, A. Nel, P. Tafforeau, and M.S. Engel. 2011. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera: Maimetshidae). ZooKeys 130: 421–453.

    Article  Google Scholar 

  • Petrulevičius, J.F., A. Nel, D. De Franceschi, C. Goillot, P.-O. Antoine, R. Salas-Gismondi, and J.J. Flynn. 2011. First fossil blood sucking Psychodidae in South America: a sycoracine moth fly (Insecta: Diptera) in the middle Miocene Amazonian amber. Insect Systematics & Evolution 42: 87–96.

    Article  Google Scholar 

  • Pepinelli, M., M. Spironello, and D.C. Currie. 2013. Geometric morphometrics as a tool for interpreting evolutionary transitions in the black fly wing (Diptera: Simuliidae). Zoological Journal of the Linnean Society 169: 377–388.

    Article  Google Scholar 

  • Pohl, H., B. Wipfler, D. Grimaldi, F. Beckmann, and R.G. Beutel. 2010. Reconstructing the anatomy of the 42 million-year-old fossil †Mengea tertiara (Insecta: Strepsiptera). Naturwissenschaften 97: 855–859.

    Article  Google Scholar 

  • Poinar Jr, G.O. 2009. Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites Vectors 2: 17. doi:10.1186/1756-3305-2-12.

    Article  Google Scholar 

  • Poinar Jr, G.O. 2010. Palaeoecological perspectives in Dominican amber. Annales de la Société Entomologique de France (Nouvelle série) 46: 23–52.

    Article  Google Scholar 

  • Poinar Jr, G.O. 2011a. Panstrongylus hispaniolae sp. n. (Hemiptera: Reduviidae: Triatominae), a new fossil triatomine in Dominican amber, with evidence of gut flagellates. Palaeodiversity 6: 1–8.

    Google Scholar 

  • Poinar Jr, G.O. 2011b. Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber. Parasites & Vectors 4: 229.

    Article  Google Scholar 

  • Poinar Jr, G.O., and R. Buckley. 2012. Predatory behaviour of the social orb-weaver spider, Geratonephila burmanica n. gen., n. sp. (Araneae: Nephilidae) with its wasp prey, Cascoscelio incassus n. gen., n. sp. (Hymenoptera: Platygastridae) in Early Cretaceous Burmese amber. Historical Biology: An International Journal of Palaeobiology 24: 519–525.

    Article  Google Scholar 

  • Poinar, G.O. Jr. & Buckley, R. 2013. Predatory behaviour of social orb-weaving spiders: response to Penn[e]y. Historical Biology: An International Journal of Palaeobiology. doi:10.1080/08912963.2012.751104.

  • Poinar Jr, G.O., and R. Poinar. 1999. The amber forest: a reconstruction of a vanished world. New Jersey: Princeton University Press.

    Google Scholar 

  • Poinar Jr, G.O., and S.R. Telford. 2005. Paleohaemoproteus burmacis gen. n., sp. n. (Haemosporida: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae). Parasitology 131: 79–84.

    Article  Google Scholar 

  • Poinar Jr, G.O., B. Archibald, and A. Brown. 1999. New amber deposit provides evidence of early Paleogene extinctions, paleoclimates, and past distributions. The Canadian Entomologist 131: 171–177.

    Article  Google Scholar 

  • Ross, A.J. 2012. Testing decreasing variability of cockroach forewings through time using four recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Science 19: 129–142.

    Article  Google Scholar 

  • Ross, A.J., and M.S. Engel. 2013. The first diplatyid earwig in Tertiary amber (Dermaptera: Diplatydae): a new species from Miocene Mexican amber. Insect Systematics and Evolution 44: 157–166.

    Article  Google Scholar 

  • Ross, A[.J.]., and A. Sheridan. 2013. Amazing amber. Edinburgh: National Museums Scotland.

    Google Scholar 

  • Rust, J., H. Singh, R.S. Rana, T. McCann, L. Singh, K. Anderson, N. Sarkar, P.C. Nascimbene, F. Stebner, J.C. Thomas, M. Solórzano Kraemer, J.C. Williams, M.S. Engel, A. Sahni, and D. Grimaldi. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences USA 107: 18360–18365.

    Article  Google Scholar 

  • Saupe, E.E., and P.A. Selden. 2011. The study of fossil spider species. Comptes Rendus Palevol 10: 181–188.

    Article  Google Scholar 

  • Saupe, E.E., R. Pérez de la Fuente, P.A. Selden, X. Delclòs, P. Tafforeau, and C. Soriano. 2012. New Orchestina Simon, 1882 (Araneae: Oonopidae) from Cretaceous ambers of Spain and France: first spiders imaged using phase-contrast X-ray synchrotron microtomography. Palaeontology 5: 127–143.

    Article  Google Scholar 

  • Schmidt, A.R. 2013. Microorganisms in amber and their use in understanding terrestrial palaeoecosystems. Abstracts of the 6th International Congress on Fossil Insects. Arthropods and Amber, Byblos, Lebanon 2013: 8–9.

    Google Scholar 

  • Schmidt, A.R., E. Ragazzi, O. Coppellotti, and G. Roghi. 2006. A microworld in Triassic amber. Nature 444: 835.

    Article  Google Scholar 

  • Schmidt, A.R., V. Perrichot, M. Svojtka, K.B. Anderson, K.H. Belete, R. Bussert, H. Dörfelt, S. Jancke, B. Mohr, E. Mohrmann, P.C. Nascimbene, A. Nel, P. Nel, E. Ragazzi, G. Roghi, E.E. Saupe, K. Schmidt, H. Schneider, P.A. Selden and N. Vávra. 2010a. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences USA, 201000948; online April 5, 2010. doi:10.1073/pnas.1000948107.

  • Schmidt, A.R., V. Girard, V. Perrichot, and W. Schönborn. 2010b. Testate amoebae from a Cretaceous forest floor of France. Journal of Eukaryotic Microbiology 57: 245–249.

    Google Scholar 

  • Schmidt, A.R., S. Jancke, E. Ragazzi, G. Roghi, E.E. Lindquist, P. Nascimbene, K. Schmidt, T. Wappler, and D.A. Grimaldi. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences USA 109(37): 14796–14801.

    Article  Google Scholar 

  • Sendaydiego, J.P., M.A.J. Torres, and C.G. Demayo. 2013. Describing wing geometry of Aedes aegypti using landmark-based geometric morphometrics. International Journal of Bioscience, Biochemistry and Bioinformatics 3: 379–383.

    Google Scholar 

  • Seredszus, F., and W. Wichard. 2007. Fossil chironomids (Insecta: Diptera) in Baltic amber. Palaeontographica Abteilung A 279(1–3): 49–91.

    Google Scholar 

  • Smith, A.B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Oxford: Blackwell Science.

    Book  Google Scholar 

  • Solórzano Kraemer, M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from the Mexican amber. Palaeontographica Abteilung A 282(1–6): 1–133.

    Google Scholar 

  • Solórzano Kraemer, M.M., and F. Stebner. 2012. Paleocomunidades y comunidades. comparación de la fauna insectil fossil del ámbar mexicano con la fauna insectil de la costa del pacifico de Chiapas. Entomología Mexicana 11: 27–31.

    Google Scholar 

  • Solórzano Kraemer, M.M., F. Stebner and A.S. Kraemer. 2013a. Trapping bias in sampling arthropods, including Mexican amber. Abstracts of the 6th International Congress on Fossil Insects, Arthropods and Amber, Byblos, Lebanon 2013: 35.

  • Solórzano Kraemer, M.M., F. Stebner, J. Rust and A.S. Kraemer. 2013b. Catching insects in amber—a taphonomical study in southern Mexico. Abstracts of the 6th International Congress on Fossil Insects, Arthropods and Amber, Byblos, Lebanon 2013: 73.

  • Sontag, E. 2003. Animal inclusions in a sample of unselected Baltic amber. Acta Zoologica Cracoviensia 46(Supplement-Fossil Insects): 431–440.

    Google Scholar 

  • Soriano, C., M. Archer, D. Azar, Ph Creaser, X. Delclòs, H. Godthelp, S. Hand, A. Jones, A. Nel, D. Néraudeau, J. Ortega-Blanco, R. Pérez de la Fuente, V. Perrichot, E. Saupe, M. Solórzano Kraemer, and P. Tafforeau. 2010. Synchrotron X-ray imaging of inclusions in amber. Comptes Rendus Palevol 9: 361–368.

    Article  Google Scholar 

  • Speranza, M., J. Wierzchos, J. Alonso, L. Bettucci, A. Martín-González, and C. Ascaso. 2010. Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. In Microscopy: science, technology, applications and education, ed. A. Mendez-Vilas, and J. Diaz, 1135–1145. Spain: Formatex Research Centre.

    Google Scholar 

  • Stork, N.E. 1988. Insect diversity: facts, fiction and speculation. Biological Journal of the Linnean Society 35: 321–337.

    Article  Google Scholar 

  • Strelow, J., M.M. Solórzano Kraemer, S. Ibáñez-Bernal, and J. Rust. 2013. First fossil horsefly (Diptera: Tabanidae) in Miocene Mexican amber. Paläontologische Zeitschrift. doi:10.1007/s12542-013-0171-7.

    Google Scholar 

  • Sutton, M., I. Rahman, and R. Garwood. 2014. Techniques for virtual paleontology (analytical methods in Earth and environmental science). New Jersey: Wiley.

    Google Scholar 

  • Szadziewski, R. 1988. Biting midges (Diptera: Ceratopogonidae) from Baltic amber. Polskie Pismo Entomologiczne 57: 3–283.

    Google Scholar 

  • Szadziewski, R. 2008. Age and recent distribution of extant genera of Ceratopogonidae (Diptera) present in the fossil record. Alavesia 2: 87–99.

    Google Scholar 

  • Szwedo, J., and E. Sontag. 2013. The flies (Diptera) say that amber from the Gulf of Gdańsk, Bitterfeld and Rovno is the same Baltic amber. Polskie Pismo Entomologiczne 82: 379–388.

    Article  Google Scholar 

  • Upchurch, P., A.J. McGowan, and C.S.C. Slater (eds.). 2011. Palaeogeography and palaeobiogeography: biodiversity in space and time. Systematics association special volumes. Boca Raton: CRC Press.

    Google Scholar 

  • von Tschirnhaus, M., and C. Hoffeins. 2009. Fossil flies in Baltic amber—insights in the diversity of Tertiary Acalyptratae (Diptera: Schizophora), with new morphological characters and a key based on 1,000 collected inclusions. Denisia, 26, zugleich Kataloge der Oberösterreichischen Landesmuseen Neue Serie 86: 171–212.

    Google Scholar 

  • Vršanský, P., T. van de Kamp, D. Azar, A. Prokin, L. Vidlička, and P. Vagovič. 2013. Cockroaches probably cleaned up after dinosaurs. PLoS One 8(12): e80560.

    Article  Google Scholar 

  • Weitschat, W., and W. Wichard. 2002. Atlas of plants and animals in Baltic amber. Munich: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Weitschat, W., and W. Wichard. 2010. Baltic amber. In Biodiversity of fossils in amber from the major world deposits, ed. D. Penney, 80–115. Manchester: Siri Scientific Press.

    Google Scholar 

  • Wichard, W. 2013. Overview and descriptions of Trichoptera in Baltic amber, 230. Remagen-Oberwinter: Verlag Kessel.

    Google Scholar 

  • Wichard, W., and H. Grevin. 2009. Über Tausendfüßler, spanische Fliegen und Heuschrecken—Zur “Historia Succinorum” des Nathanael Sendel von 1742. Denisia, 26, zugleich Kataloge der Oberösterreichischen Landesmuseen Neue Serie 86: 267–294.

    Google Scholar 

  • Wichard, W., M.M. Solórzano Kraemer, and C. Luer. 2006. First caddisfly species from Mexican amber (Insecta: Trichoptera). Zootaxa 1378: 37–48.

    Google Scholar 

  • Wichard, W., C. Gröhn, and F. Seredszus. 2009. Aquatic insects in Baltic amber. Remangen-Oberwinter: Verlag Kessel.

    Google Scholar 

  • Wood, H.M., N.J. Matzke, R.G. Gillespie, and C.E. Griswold. 2012. Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. Systematic Biology 62: 264–284.

    Article  Google Scholar 

  • Wunderlich, J. 2004. Fossil spiders in amber and copal. Beiträge zur Araneologie 3AB: 1–1908.

    Google Scholar 

  • Wunderlich, J. 2012a. Description of the first fossil Ricinulei in amber from Burma (Myanmar), the first report of this arachnid order from the Mesozoic and from Asia, with notes on the related extinct order Trigonotarbida. Beiträge zur Araneologie 7: 233–244.

    Google Scholar 

  • Wunderlich, J. 2012b. “Frozen behaviour” in “vampires” of spiders—fossil insect larvae of the family Mantispidae (Neuroptera) as parasites of sac spiders (Araneae: Clubionidae) in Eocene Baltic amber. Beiträge zur Araneologie 7: 150–156.

    Google Scholar 

  • Zakharov, B.P. 2013. Nomosystematics: a closer look at the theoretical foundation of biological classification. Manchester: Siri Scientific Press.

    Google Scholar 

  • Zherikhin, V.V., and KYu. Eskov. 1999. Mesozoic and lower tertiary resins in former USSR. Estudios del Museo de Ciencias Naturales de Álava 14(Numero Especiale 2): 119–131.

    Google Scholar 

  • Zherikhin, V.V., and K.Y. Eskov. 2006. On the real proportions of the main arthropod groups in the Baltic amber fauna, based on representative sampling. Arthropoda Selecta 15: 173–179.

    Google Scholar 

  • Zherikhin, V.V., I.D. Sukacheva, and A.P. Rasnitsyn. 2009. Arthropods in contemporary and some fossil resins. Paleontological Journal 43: 987–1005.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dr. Mike Reich (Göttingen University) for his invitation to present a keynote lecture on amber at the joint meeting of the Paläontologische Gesellschaft and the Palaeontological Society of China at Göttingen University (September 23–27, 2013): Palaeobiology & Geobiology of Fossil Lagerstätten through Earth History. This talk formed the basis of this paper, which represents a summary of my thoughts on the current state-of-the-art of amber research based of two decades of studying fossils in amber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penney, D. Sub/fossil resin research in the 21st Century: trends and perspectives. PalZ 90, 425–447 (2016). https://doi.org/10.1007/s12542-016-0294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-016-0294-8

Keywords

Schlüsselwörter

Navigation