Skip to main content
Log in

A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper investigates an algorithm for fault diagnosis in robot manipulators using a novel neural second-order sliding mode observer. Differently from the conventional neural network observer and first-order sliding mode observer for the robust fault estimation schemes, the second-order sliding mode observer is first designed and compared with them. Although the second-order sliding mode observer converges faster and with less error than each of the neural network and the first-order sliding mode observer does, it requires prior knowledge of the upper bound of the fault function. Because of this disadvantage, a neural second-order sliding mode observer is designed, which combines the second-order sliding mode observer with the neural network observer. The resulting observer not only preserves the features of the second-order sliding mode observer but also can improve it by removing the need for prior knowledge of the fault function upper bound. Computer simulation results for a PUMA560 industrial robot are also shown to verify the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FD:

Fault diagnosis

FDI:

Fault detection and isolation

NN:

Neural network

SM:

Sliding mode

SOSM:

Second-order sliding mode

NSOSM:

Neural second-order sliding mode

EOI:

Equivalent Output Injection

References

  1. Gertler, J. J., “Survey of model-based failure detection and isolation in complex plants,” Control Systems Magazine, Vol. 8, No. 6, pp. 3–11, 1988.

    Article  Google Scholar 

  2. Frank, P. M. and Ding, X., “Survey of robust residual generation and evaluation methods in observer-based fault detection systems,” Journal of Process Control, Vol. 7, No. 6, pp. 403–424, 1997.

    Article  Google Scholar 

  3. Polycarpou, M. M. and Helmicki, A. J., “Automated fault detection and accommodation: a learning systems approach,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, No. 11, pp. 1447–1458, 1995.

    Article  Google Scholar 

  4. Polycarpou, M. M. and Trunov, A. B., “Learning approach to nonlinear fault diagnosis: detectability analysis,” IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 806–812, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. Trunov, A. B. and Polycarpou, M. M., “Automated fault diagnosis in nonlinear multivariable systems using a learning methodology,” IEEE Transaction on Neural Networks, Vol. 11, No. 1, pp. 91–101, 2000.

    Article  Google Scholar 

  6. Zhang, X., Parisini, T., and Polycarpou, M. M., “Sensor bias fault isolation in a class of nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 50, No. 3, pp. 370–376, 2005.

    Article  MathSciNet  Google Scholar 

  7. Vemuri, A. T. and Polycarpou, M. M., “Neural-network-based robust fault diagnosis in robotic systems,” IEEE Transaction on Neural Networks, Vol. 8, No. 6, pp. 1410–1420, 1997.

    Article  Google Scholar 

  8. Huang, S. N., Tan, K. K., and Lee, T. H., “Automated fault detection and diagnosis in mechanical systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 37, No. 6, pp. 1094–6977, 2007.

    Article  Google Scholar 

  9. Huang, S. N. and Kok, K. T., “Fault detection, isolation, and accommodation control in robotic systems,” IEEE Transaction on Automation Science and Engineering, Vol. 5, No. 3, pp. 480–489, 2008.

    Article  Google Scholar 

  10. Eski, I., Erkaya, S., Savas, S., and Yildirim, S., “Fault detection on robot manipulators using artificial neural networks,” Robotics and Computer-Integrated Manufacturing, Vol. 27, No. 1, pp. 115–123, 2011.

    Article  Google Scholar 

  11. Van, M., Kang, H.-J., and Ro, Y.-S., “A robust fault detection and isolation scheme for robot manipulators based on neural networks,” ICIC2011, LNCS 6838, pp. 25–32, Springer-Verlag, 2011.

  12. Utkin, V., “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp. 212–222, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  13. Utkin, V., “Sliding modes in control and optimizations,” Springer-Verlag, Berlin, Germany, 1992.

    Book  Google Scholar 

  14. Yun, D., Kim, H., and Boo, K., “Brake performance evaluation of ABS with sliding mode controller on a split road with driver model,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 31–38, 2011.

    Article  Google Scholar 

  15. Dinh, V.-T., Nguyen, H., Shin, S.-M., Kim, H.-K., Kim, S.-B., and Byun, G.-S., “Tracking control of omnidirectional mobile platform with disturbance using differential sliding mode controller,” Int. J. Precis. Eng. Manuf., Vol. 13, No.1, pp. 39–48, 2012.

    Article  Google Scholar 

  16. Yi, X. and Saif, M., “Sliding mode observer for nonlinear uncertain systems,” IEEE Transactions on Automatic Control, Vol. 46, No. 12, pp. 2012–2017, 2001.

    Article  MATH  Google Scholar 

  17. Veluvolu, K. C., Soh, Y. C., and Cao, W., “Robust observer with sliding mode estimation for nonlinear uncertain systems,” IET Control Theory & Applications, Vol. 1, No. 5, pp. 1533–1540, 2007.

    Article  MathSciNet  Google Scholar 

  18. Edwards, C., Spurgeon, S. K., and Patton, R. J., “Sliding mode observers for fault detection and isolation,” Automatica, Vol. 36, No. 4, pp. 541–553, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. Levant., A., “Sliding order and sliding accuracy in sliding mode control,” International Journal of Control, Vol. 58, No. 6, pp. 1247–1263, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  20. Levant, A., “Robust exact differentiation via sliding mode technique,” Automatica, Vol. 34, No. 3, pp. 379–384, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bartolini, G., Ferrara, A., and Usai, E., “Chattering avoidance by second order sliding mode control,” IEEE Transactions on Automatic Control, Vol. 43, No. 2, pp. 241–246, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. Brambilla, D., Capisani, L. M., Ferrara, A., and Pisu, P., “Fault Detection for Robot Manipulators via Second-Order Sliding Modes,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 11, pp. 3954–3963, 2008.

    Article  Google Scholar 

  23. Davila, J., Fridman, L., and Levant, A., “Second-order sliding-mode observer for mechanical systems,” IEEE Transactions on Automatic Control, Vol. 50, No. 11, pp. 1785–1789, 2005.

    Article  MathSciNet  Google Scholar 

  24. Davila, J., Fridman, L., and Poznyak, A., “Observation and Identification of Mechanical Systems via Second Order Sliding Modes,” International Workshop on Variable Structure Systems, pp. 232–237, 2006.

  25. Edwards, C., Fridman, L., and Thein, M.-W. L., “Fault Reconstruction in a Leader/Follower Spacecraft System Using Higher Order Sliding Mode Observers,” Proceeding of American Control Conference, pp. 408–413, 2007.

  26. Capisani, L. M., Ferrara, A., and Fridman, L., “Higher Order Sliding Mode observers for actuator faults Diagnosis in robot manipulators,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 2103–2108, 2010.

  27. Abdollahi, F., Talebi, H. A., and Patel, R. V., “A stable neural network-based observer with application to flexible-joint manipulators,” IEEE Transactions on Neural Networks, Vol. 17, No. 1, pp. 118–129, 2006.

    Article  Google Scholar 

  28. Qing, W. and Saif, M., “A neural-fuzzy sliding mode observer for robust fault diagnosis,” Proceeding of American Control Conference, pp. 4982–4987, 2009.

  29. Moreno, J. A. and Osorio, M., “A Lyapunov approach to secondorder sliding mode controllers and observers,” Proceeding of 47th IEEE Conference on Decision and Control, pp. 2856–2861, 2008.

  30. Khalil, H., “Nonlinear systems,” Prentice Hall, New Jersey, USA, 2002.

    MATH  Google Scholar 

  31. Armstrong, B., Oussama, K., and Burdick, J., “The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm,” Proceeding of 1986 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 510–518, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van, M., Kang, HJ. & Suh, YS. A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators. Int. J. Precis. Eng. Manuf. 14, 397–406 (2013). https://doi.org/10.1007/s12541-013-0055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0055-5

Keywords

Navigation