Skip to main content
Log in

Abstract

Wear is a phenomenon that is encountered in most mechanical systems with moving parts. It is directly related to the life and reliability of the system, and hence, wear should be controlled in order to achieve the desired life and performance of the system. Due to the complex nature of wear, understanding of the mechanisms of wear is still lacking. The extent and characteristics of wear depend on the scale of the system which is largely dictated by the load applied between the components in contact. Particularly, in nano-scale, the mechanisms of friction and wear are unclear and often elusive. As such, the development of microsystems technology is hindered by the challenges of surmounting the friction and wear problems at the nano-scale. In this paper advancements made in the field of nano-wear are reviewed with the aim to provide an overview that can be useful to engineers and scientists who are not necessarily in the field of tribology. Research works conducted using AFM to probe the nano-scale wear of ultra-precision components are discussed. The works related to nanotribology of MEMS are also reviewed. In addition to the experimental investigations, theoretical and simulation works regarding nano-wear at the atomic-scale are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gahr, K. Z., “Microstructure and wear of materials,” Elsevier, 1987.

  2. Kim, H. J. and Kim, D. E., “Nano-scale Friction: A review,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 141–151, 2009.

    Article  Google Scholar 

  3. Bhushan, B., “Principles and applications of tribology,” John Wiley & Sons, Inc, 1999.

  4. Jost, H. P., “Tribology — origin and future,” Wear, Vol. 136, No. 1, pp. 1–17, 1990.

    Article  Google Scholar 

  5. Kang, K. H., Kim, H. J., and Kim, D. E., “Characteristics of progressive damage of ZnO nanowires during contact sliding under relatively low loads,” J. of Nanomat., Vol. 2011, Article ID 624195, 2011.

  6. Kim, H. J. and Kim, D. E., “Effect of surface roughness of top cover layer on the efficiency of dye-sensitized solar cell,” Solar Energy, Vol. 86, No. 7, pp. 2049–2055, 2012.

    Article  Google Scholar 

  7. Stachowiak, G. W., “Wear — materials, mechanisms and practice,” John Wiley & Sons, Inc, 2005.

  8. Archard, J. F., “Contacting and rubbing of flat surfaces,” J. of Appl. Phys., Vol. 24, No. 8, pp. 981–988, 1953.

    Article  Google Scholar 

  9. Rabinowicz, E., “Friction and wear of materials,” John Wiley & Sons, Inc, 1995.

  10. Bhushan, B. and Kwak, K. J., “Velocity dependence of nanoscale wear in atomic force microscopy,” Appl. Phys. Lett., Vol. 91, No. 16, Paper No. 163113, 2007.

  11. Gnecco, E., Bennewitz, R., and Meyer, E., “Abrasive wear on atomic scale,” Appl. Phys. Lett., Vol. 88, No. 21, Paper No. 215501, 2002.

  12. Ovcharenko, A., Halperin, G., and Etision, I., “In situ and realtime optical investigation of junction growth in spherical elastic-plastic contact,” Wear, Vol. 264, No. 11, pp. 1043–1050, 2008.

    Article  Google Scholar 

  13. Bennewitz, R. and Dickinson, J. T., “Fundamental studies of nanometer-scale wear mechanisms,” MRS Bull., Vol. 33, pp. 1174–1180, 2008.

    Article  Google Scholar 

  14. Wakuda, M., Yamauchi, Y., Kanzaki, S., and Yasuda, Y., “Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact,” Wear, Vol. 254, No. 3, pp. 356–363, 2003.

    Article  Google Scholar 

  15. Chouquet, C., Gavillet, J., Ducros, C., and Sanchette, F., “Effect of DLC surface texturing on friction and wear during lubricated sliding,” Mat. Chem. And Phys., Vol. 123, No. 2, pp. 367–371, 2010.

    Article  Google Scholar 

  16. Luo, J., Meng, Y., Shao, T., and Zhao, Q., “Advanced Tribology: Proc. of CIST2008 & ITS-IFToMM2008,” Springer, 2010.

  17. Deng, J. and Braun, M., “DLC multilayer coatings for wear protection,” Diamond Relat. Mater., Vol. 4, No. 7, pp. 936–943, 1995.

    Article  Google Scholar 

  18. Chowalla, M. and Amaratunga. G., “Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear,” Nature, Vol. 407, pp. 164–167, 2000.

    Article  Google Scholar 

  19. Sheng, X., Yu, S., Luo, X., and He, S., “Wear behavior of graphite studies in an air-conditioned environment,” Nucl. Eng. and Design, Vol. 223, No. 2, pp. 109–115, 2003.

    Article  Google Scholar 

  20. Bhushan, B., “Nanotribology and nanomechanics — An introduction,” Springer, 2005.

  21. Liskiewicz, T. W., Beake, B. D., and Smith, J. F., “In situ accelerated micro-wear — A new technique to fill the measurement gap,” Surf. & Coat. Tech., Vol. 205, pp. 1455–1459, 2010.

    Article  Google Scholar 

  22. Cagin, T., Che, J., Gardos, M., Fijany, A., and Goddard, W., “Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application,” Nanotechnology, Vol. 10, pp. 278–284, 1999.

    Article  Google Scholar 

  23. Adams, J., Hector, L., Siegel, D., Yu, H., and Zhong, J., “Adhesion, lubrication and wear on the atomic scale,” Surf. Interface Anal., Vol. 31, pp. 619–626, 2001.

    Article  Google Scholar 

  24. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M., Despont, M., Jaroenapibal, P., Carpick, R., Chen, Y., and Sridharan, K., “Ultralow nanoscale wear through atom-byatom attrition in silicon-containing diamond-like carbon,” Nature Nanotech., Vol. 5, pp. 181–185, 2010.

    Article  Google Scholar 

  25. Jacobs, T., Gotsmann, B., Lantz, M., and Carpick, R., “On the application of transition state theory to atomic-scale wear,” Tribol. Lett., Vol. 39, pp. 257–271, 2010.

    Article  Google Scholar 

  26. Kang, K. H., Penkov, O., Kim, H. J., and Kim, D. E., “Effectiveness of bubble structure in contact damage reduction of Au film,” Tribol. Int., Vol. 55, pp. 40–45, 2012.

    Article  Google Scholar 

  27. Kim, C. L., Kim, Y. T., Lee, K. S., Kim, D. E., Ko, Y. G., and Jang, Y. S., “Damage of rotary tool for removal of intravascular blood clots,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 3, pp. 413–419, 2012.

    Article  Google Scholar 

  28. Lin, L. Y. and Kim, D. E., “Tribological properties of polymer/silica composite coatings for microsystems applications,” Tribol. Int., Vol. 44, No. 12, pp. 1926–1931, 2012.

    Article  Google Scholar 

  29. Cho, M. H., “The role of transfer film and back transfer behavior on the tribological performance of polyoxymethylene in sliding,” J. of Mech. Sci. and Tech., Vol. 23, pp. 2291–2298, 2009.

    Article  Google Scholar 

  30. Pham, D. C., Na, K., Yang, S., Kim, J., and Yoon, E., “Nanotribological properties of silicon nano-pillars coated by Z-DOL lubricating film,” J. of Mech. Sci. and Tech., Vol. 24, pp. 59–65, 2010.

    Article  Google Scholar 

  31. Carpick, R., “Scratching the surface: Fundamental investigations of tribology with atomic force microscopy,” Chem. Rev., Vol. 97, pp. 1163–1194, 1997.

    Article  Google Scholar 

  32. Chung, K. H., Lee, Y. H., and Kim, D. E., “Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip,” Ultramicroscopy, Vol. 102, pp. 161–171, 2005.

    Article  Google Scholar 

  33. Chung, K. H. and Kim, D. E., “Wear characteristics of diamond coated atomic force microscope probe,” Ultramicroscopy, Vol. 108, pp. 1–10, 2007.

    Article  Google Scholar 

  34. Sung, I. H., “Development of mechano-chemical nanolithography technology based on nanotribological interactions,” Ph.D. Thesis, Department of Mechanical Engineering, Yonsei University, 2004.

  35. Chung, K. H. and Kim, D. E., “Fundamental investigation of micro-wear rate using an atomic force microscope,” Tribol. Lett., Vol. 15, No. 2, pp. 135–144, 2003.

    Article  Google Scholar 

  36. Beerschwinger, U., Albrecht, T., Mathieson, D., Reuben, R. L., Yang, S. J., and Taghizadeh, M., “Wear at microscopic scales and light loads for MEMS applications,” Wear, Vol. 181-183, pp. 426–435, 1995.

    Google Scholar 

  37. Gotsmann, B. and Lantz, M., “Atomistic wear in a single asperity sliding contact,” Phys. Rev. Lett., Vol. 101, Paper No. 125501, 2008.

  38. Chung, K. H., Lee, Y. H., Kim, D. E., Yoo, J., and Hong, S., “Tribological characteristics of probe tip and PZT media for AFM-based recording technology,” IEEE Trans. on Magn., Vol. 41, No. 2, pp. 849–854, 2005.

    Article  Google Scholar 

  39. Maw, W., Stevens, F., Langford, S. C., and Dickinson, J. T., “Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy,” J. of Appl. Phys., Vol. 92, No. 9, Paper No. 5103, 2002.

  40. Liu, J., Notbohm, J. K., Carpick, R. W., and Turner, K. T., “Method for characterizing nanoscale wear of atomic force microscope tips,” ACS Nano, Vol. 4, No. 7, pp. 3763–3772, 2010.

    Article  Google Scholar 

  41. Tambe, T. S. and Bhushan, B., “Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities,” Tribol. Lett., Vol. 20, No. 1, pp. 83–90, 2005.

    Article  Google Scholar 

  42. Lantz, M. A., Wiesmann, D., and Gotsmann, B., “Dynamic superlubricity and the elimination of wear on the nanoscale,” Nature Nanotech., Vol. 4, pp. 586–591, 2009.

    Article  Google Scholar 

  43. Liu, J., Grierson, D. S., Moldovan, N., Notbohm, J., Li, S., Jaroenapibal, P., O’Connor, S. D., Sumant, A. V., Neelakantan, N., Carlisle, J. A., Turner, K. T., and Carpick, R. W., “Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes,” Small, Vol. 6, No. 10, pp. 1140–1149, 2010.

    Article  Google Scholar 

  44. Lin, L. Y., Kim, D. E., Kim, W. K., and Jun, S. C., “Friction and wear characterisitics of multi-layer graphene films investigated by atomic force microscopy,” Surf. & Coat. Tech., Vol. 205, pp. 4864–4869, 2011.

    Article  Google Scholar 

  45. Fan, L. S., Tai, Y. C., and Muller, R. S., “Integrated movable micromechanical structures for sensors and actuators,” IEEE T. Electron Dev., Vol. 35, pp. 724–730, 1988.

    Article  Google Scholar 

  46. Maboudian, R., “Surface process in MEMS technology,” Surf. Sci. Reports, Vol. 30, pp. 207–269, 1998.

    Article  Google Scholar 

  47. Krause, P., Obermeier, E., and Wehl, W., “A micromachined single-chip inkjet printhead,” Sensor Acuat. A-Phys., Vol. 53, No. 1-3, pp. 405–409, 1996.

    Article  Google Scholar 

  48. Amini, B. V. and Ayzi, F., “Micro-gravity capacitive silicon-oninsulator accelerometers,” J. Micromech. Microeng., Vol. 15, pp. 2113–2120, 2005.

    Article  Google Scholar 

  49. Garcia, E. J. and Sniegowski, J. J., “Surface micromachined microengine,” Sensor Acutat. A: Physical, Vol. 48, pp. 203–214, 1995.

    Article  Google Scholar 

  50. Kolesar, E. S., Odom, W. E., Jayachandran, J. A., Ruff, M. D., Ko, S. Y., Howard, J. T., Allen, P. B., Wilken, J. M., Boydston, N. C., Bosch, J. E., Wilks, R. J., and McAllister, J. B., “Design and performance of an electrothermal MEMS microengine capable of bi-directional motion,” Thin Solid Films, Vol. 447–448, pp. 481–488, 2004.

    Article  Google Scholar 

  51. MEMS Market Tracker, 2011, www.iSuppli.com.

  52. Zhao, Y. P. and Yu, T. X., “Failure modes of MEMS and microscale adhesive contact theory,” Int. J. Nonlin. Sci. Num., Vol. 1, pp. 361–371, 2000.

    Article  Google Scholar 

  53. Spengen, W. M. V., “MEMS reliability from a failure mechanisms perspective,” Microelectron. Reliab., Vol. 43, pp. 1049–1060, 2003.

    Article  Google Scholar 

  54. Komvopoulos, K., “Surface engineering and microtribology for microelectromechanical systems,” Wear, Vol. 200, pp. 305–327, 1996.

    Article  Google Scholar 

  55. Miller, S. L., LaVigne, G., Rodgers, M. S., Sniegowski, J. J., Waters, J. P., and McWorther, P. J., “Routes to failure in rotating MEMS devices experiencing sliding friction,” Proc. SPIE, Vol. 3224, pp. 24–30, 1997.

    Article  Google Scholar 

  56. Miller, S. L., Rodgers, M. S., LaVigne, G., Sniegowski, J. J., Clews, P., and Tanner, D. M., “Failure modes in surface micromachined micro-electromechanical actuators,” Proc. IRPS Annu. Conf., 1998.

  57. Tanner, D. M., Miller, W. M., Eaton, W. P., and Irwin, L. W., “The effect of frequency on the lifetime of a surface micromachined microengine driving a load,” Proc. IRPS Annu. Conf., 1998.

  58. Tanner, D. M., Peterson, K. A., Irwin, L. W, Tanyunyong, P., Miller, W. M., Eaton, W. P., Smith, N. F., and Rodgers, M. S., “Linkage design effect on the reliability of surface micromachined microengines driving a load,” Proc. SPIE, Vol. 3512, pp. 215–226, 1998.

    Article  Google Scholar 

  59. Tanner, D. M., Smith, N. F., Bowman, D. J., Eaton, W. P., and Peterson, K. A., “First reliability test of a surface micromachined microengine using SHiMMeR,” Proc. SPIE, Vol. 3224, pp. 14–23, 1997.

    Article  Google Scholar 

  60. Chllins, J. A., “Failure of materials in mechanical design: analysis, prediction, prevention,” John Wiley & Sons, 1993.

  61. Tanner, D. M., Walraven, J. A., Barnes, S. M., Smith, N. F., Bitsie, F., and Swanson, S. E., “Reliability of a MEMS torsional ratcheting actuator,” Proc. IRPS Annu. Conf., pp. 81–91, 2001.

  62. Hsu, T. R., “MEMS and microsystems: design, manufacture, and nanoscale engineering,” John Wiley & Sons, 2008.

  63. Beerschwinger, U., Mathieson, D., Rueben, R. L., and Yang, S. J., “A study of wear on MEMS contact morphologies,” J. Micromech. Microeng., Vol. 4, pp. 95–105, 1994.

    Article  Google Scholar 

  64. Chung, K. H., Jang, C. E., and Kim., D. E., “Wear characteristics of microscopic bushing for MEMS applications investigated by an AFM,” J. Micromech. Microeng., Vol. 17, pp. 1877–1887, 2007.

    Article  Google Scholar 

  65. Kim, H. J. and Kim, D. E., “Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces,” Nanoscale, Vol. 4, pp. 3937–3944, 2012.

    Article  Google Scholar 

  66. Kim, H. J. and Kim, D. E., “MD Simulation of the frictional behavior of CNTs with respect to orientation,” Tribol. Int., Vol. 50, pp. 51–56, 2012.

    Article  Google Scholar 

  67. Jeng, Y. R., Tsai, P. C., and Fang, T. H., “Molecular dynamics of atomic-scale tribological characteristics for different sliding systems,” Tribol. Lett., Vol. 18, No. 3, pp. 315–330, 2005.

    Article  Google Scholar 

  68. Zhong, J. and Adams, J., “Molecular dynamics simulations of asperity shear in aluminum,” J. of Appl. Phys., Vol. 94, No. 7, pp. 4306–4314, 2003.

    Article  Google Scholar 

  69. Cheng, K., Luo, X., Ward, R., and Holt, R., “Modeling and simulation of the tool wear in nanometric cutting,” Wear, Vol. 255, pp. 1427–1432, 2003.

    Article  Google Scholar 

  70. Tang, Q. and Chen, F., “MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip,” J. Appl. Phys., Vol. 39, pp. 3674–3679, 2006.

    Google Scholar 

  71. Varenberg, M., Etsion, I., and Halperin, G., “Nanoscale fretting wear study by scanning probe microscopy,” Tribol. Lett., Vol. 18, No. 4, pp. 493–498, 2005.

    Article  Google Scholar 

  72. Chung, K. H., Lee, Y. H., Kim, Y. T., Kim, D. E., Yoo, J., and Hong, S., “Nano-tribological characteristics of PZT thin film investigated by atomic force microscopy,” Surf. & Coat. Tech., Vol. 201, pp. 7983–7991, 2007.

    Article  Google Scholar 

  73. Chung, K. H., Kim, H. J., Lin, L. Y., and Kim, D. E., “Tribologcial characteristics of ZnO nanowires investigated by atomic force microscope,” Appl. Phys. A, Vol. 92, pp. 267–274, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Yoo, SS. & Kim, DE. Nano-scale wear: A review. Int. J. Precis. Eng. Manuf. 13, 1709–1718 (2012). https://doi.org/10.1007/s12541-012-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0224-y

Keywords

Navigation