Skip to main content
Log in

Microstructure, Tensile and Fatigue Behaviour of Resistance Spot Welded Zinc Coated Dual Phase and Interstitial Free Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Galvannealed (hot dip galvanized and annealed) dual phase (DP600) steel and interstitial free (IF) steel are two of the widely used materials in automotive industries owing to their high specific strength, toughness, formability and corrosion resistance. This inevitably requires their joining to form larger components. Resistance spot welding has emerged as the predominant welding technique for joining of sheet metals in automotive industries. There are complexities regarding microstructural variation of the fusion zone and across heat affected zones during spot welding of fundamentally dissimilar steels. This is further aggravated by the prospect of zinc redistribution during the welding process. Current study presents the evolution of microstructure in different zones of welding in IF and DP600 steel. Micro-hardness profiles and electron back scattered diffraction studies were performed. Furthermore, redistribution of elements in different welding zones is studied using electron probe micro analysis. The effect of welding current and time on the nugget size and the strength of the weld during tensile–shear is determined. It was observed that there was an increase in nugget diameter and maximum load bearing capacity of the joint with an increase in heat input, until the occurrence of expulsion. Furthermore, critical nugget diameter for pull-out failure was determined and existing empirical models were verified for the applicability in this case. None of the existing empirical models could predict the critical nugget diameter correctly and thus a new empirical relationship between sheet thickness and critical nugget diameter for zinc coated dissimilar steels has been proposed. Failure behaviour of the spot-welded sheets were studied under tensile–shear configuration under quasi-static and fatigue mode of loading and it showed substantial difference in location of crack initiation and fractographic features. Tensile–shear specimen at optimum welding parameter failed from the base metal of the IF steel side with dimples on the fracture surface, whereas fatigue specimen failed from the heat affected zone of the IF steel side with transgranular striations on the fracture surface.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. X. Jiang, S. Chen, J. Gong, Z. Lu, Metals 9, 685–702 (2019)

    CAS  Google Scholar 

  2. M.D. Tumuluru, Weld. J. 85, 31–37 (2006)

    CAS  Google Scholar 

  3. X. Sun, E.V. Stephens, M.A. Khaleel, Eng. Fail. Anal. 15, 356–367 (2008)

    CAS  Google Scholar 

  4. M.S. Khan, S.D. Bhole, D.L. Chen, E. Biro, G. Boudreau, J. van Deventer, Sci. Technol. Weld. Join. 14, 616–625 (2009)

    CAS  Google Scholar 

  5. S. Dancette, D. Fabregue, V. Massardier, J. Merlin, T. Dupuy, M. Bouzekri, Eng. Fail. Anal. 25, 112–122 (2012)

    CAS  Google Scholar 

  6. L.E. Svensson, J.K. Larsson, Steel World (UK) 7, 21–32 (2002)

    CAS  Google Scholar 

  7. H.G. Yang, Y.S. Zhang, X.M. Lai, G.L. Chen, Mater. Des. 29, 1679–1684 (2008)

    CAS  Google Scholar 

  8. M. Pouranvari, S.P.H. Marashi, Sci. Technol. Weld. Join. 15, 149–155 (2010)

    CAS  Google Scholar 

  9. P. Zhang, J. Xie, Y.X. Wang, J.Q. Chen, Sci. Technol. Weld. Join. 16, 567–574 (2011)

    CAS  Google Scholar 

  10. E. Bayraktar, D. Kaplan, L. Devillers, J.P. Chevalier, J. Mater. Process. Technol. 189, 114–125 (2007)

    CAS  Google Scholar 

  11. A. Chakraborty, D. Bhattacharjee, R. Pais, R.K. Ray, Scripta Mater. 57, 715–718 (2007)

    CAS  Google Scholar 

  12. M. Morishita, K. Koyama, M. Murase, Y. Mori, ISIJ Int. 36(6), 714–719 (1996)

    CAS  Google Scholar 

  13. A. Chakraborty, M. Dutta, R. Pais, R.K. Ray, Surf. Coat. Technol. 204, 3481–3489 (2010)

    CAS  Google Scholar 

  14. S.K. Khanna, X. Long, Sci. Technol. Weld. Join. 13, 278–288 (2008)

    Google Scholar 

  15. S.S. Nayak, Y. Zhou, V.H.B. Hernandez, Resistance spot welding of dual-phase steels: heat affected zone softening and tensile properties, in Proceedings of the 9th International Conference on ‘Trends in Welding Research’ Chicago, USA (2012), pp. 641–649

  16. H. Lee, N. Kim, T.S. Lee, Eng. Fract. Mech. 72, 1203–1221 (2005)

    Google Scholar 

  17. I. Hajiannia, M. Shamanian, M. Atapour, R. Ashiri, SAE Int. J. Mater. Manuf. 12, 5–18 (2018)

    Google Scholar 

  18. S. Aslanlar, A. Ogur, U. Ozsarac, E. Ilhan, Mater. Des. 29, 1427–1431 (2008)

    CAS  Google Scholar 

  19. S.M. Hamidinejad, F. Kolahan, A.H. Kokabi, Mater. Des. 34, 759–767 (2012)

    CAS  Google Scholar 

  20. C. Summerville, D. Adams, P. Compston, M. Doolan, Proc. Eng. 183, 257–263 (2017)

    Google Scholar 

  21. P.S. Wei, T.H. Wu, Int. J. Therm. Sci. 86, 421–429 (2014)

    Google Scholar 

  22. M. Pouranvari, S.P.H. Marashi, Sci. Technol. Weld. Join. 18, 361–403 (2013)

    CAS  Google Scholar 

  23. M. Pouranvari, Mater. Sci. Technol. 33, 1705–1712 (2017)

    CAS  Google Scholar 

  24. B.V.H. Hernandez, M.L. Kuntz, M.I. Khan, Y. Zhou, Sci. Technol. Weld. Join. 13, 769–776 (2008)

    Google Scholar 

  25. G. Mukhopadhyay, S. Bhattacharya, K.K. Ray, J. Mater. Process. Technol. 209, 1995–2007 (2009)

    CAS  Google Scholar 

  26. S.S. Rao, R. Chhibber, K.S. Arora, M. Shome, J. Mater. Process. Technol. 246, 252–261 (2017)

    CAS  Google Scholar 

  27. P. Banerjee, R. Sarkar, T.K. Pal, M. Shome, J. Mater. Process. Technol. 238, 226–243 (2016) 

    CAS  Google Scholar 

  28. M. Marya, X. Q. Gayden, Weld. J. 84, 172s–182s (2005)

  29. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, D.S. Wilkinson, Mater. Sci. Eng. A 516, 7–16 (2009)

    Google Scholar 

  30. A. Chabok, E. Van der Aa, J.T.M. De Hosson, Y.T. Pei, Mater. Des. 124, 171–182 (2017)

    CAS  Google Scholar 

  31. D. Dong, Y. Liu, Y. Yang, J. Li, M. Ma, T. Jiang, Mater. Sci. Eng. A 594, 17–25 (2014)

    CAS  Google Scholar 

  32. D.J. Radakovic, M. Tumuluru, Weld. J. 91, 8–15 (2012)

    Google Scholar 

  33. H. Ghadbeigi, C. Pinna, S. Celotto, Mater. Sci. Eng. A 588, 420–431 (2013)

    CAS  Google Scholar 

  34. C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, E. Biro, Mater. Sci. Eng. A 485, 334–346 (2008)

    Google Scholar 

  35. M. Pouranvari, S.P.H. Marashi, S.M. Mousavizadeh, Sci. Technol. Weld. Join. 15, 625–631 (2010)

    CAS  Google Scholar 

  36. BS 1140:1993, Specification for Resistance Spot Welding of Uncoated and Coated Low Carbon Steel (British Standard, London, 1993)

    Google Scholar 

  37. M. Brozek, A. Novakova, O. Niedermeier, Acta Univ. Agric. Silvic. Mendelianae Brun. 65, 807–814 (2017)

    CAS  Google Scholar 

  38. K. Kishore, P. Kumar, G. Mukhopadhyay, J. Mater. Process. Technol. 271, 237–248 (2019)

    CAS  Google Scholar 

  39. J. Park, J.S. Kim, M. Kang, S.S. Sohn, W.T. Cho, H.S. Kim, S. Lee, Sci. Rep. 7, 40231 (2017)

    CAS  Google Scholar 

  40. M.J. Molaei, A. Ekrami, Mater. Sci. Eng. A 527, 235–238 (2009)

    Google Scholar 

  41. D.L. Chen, Z.G. Wang, X.X. Jiang, S.H. Ai, C.H. Shih, Mater. Sci. Eng. A 108, 141–151 (1989)

    Google Scholar 

  42. M. Pouranvari, Assoc. Metall. Eng. Serbia 16, 187–194 (2010)

    CAS  Google Scholar 

  43. M. Pouranvari, S. Sobhani, F. Goodarzi, J. Manuf. Process. 31, 867–874 (2018)

    Google Scholar 

  44. R. Blondeau, Heat Treatm. 76, 189–200 (1976)

    Google Scholar 

  45. S. Vignier, E. Biro, M. Herve, Weld. World 58, 297–305 (2014)

    Google Scholar 

  46. M.I. Khan, M.L. Kuntz, E. Biro, Y. Zhou, Mater. Trans. 49, 1629–1637 (2008)

    CAS  Google Scholar 

  47. I. Hajiannia, M. Shamanian, M. Atapour, E. Ghassemali, R. Ashiri, Cogent Eng. 5, 1512939 (2018)

    Google Scholar 

  48. D. Kumar, S. Idapalapati, W. Wang, S. Narasimalu, Materials 12, 2503 (2019)

    CAS  Google Scholar 

  49. M. Pouranvari, Mater. Sci. Eng. A 546, 129–138 (2012)

    CAS  Google Scholar 

  50. S. Aktas, U. Ozsarac, S. Aslanlar, Mater. Manuf. Process. 27, 756–764 (2012)

    CAS  Google Scholar 

  51. S. Acharya, K.K. Ray, Mater. Sci. Eng. A 565, 405–413 (2013)

    CAS  Google Scholar 

  52. S. Salimi Beni, M. Atapour, M.R. Salmani, R. Ashiri, Metall. Mater. Trans. A 50, 2218–2234 (2019)

    CAS  Google Scholar 

  53. AWS/SAE D8.9M, Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behaviour of Automotive Sheet Steel Materials (American National Standard, New York, 2012)

    Google Scholar 

  54. Y.J. Chao, J. Eng. Mater. Technol. 125, 125–132 (2003)

    Google Scholar 

  55. D. Zhao, Y. Wang, D. Liang, P. Zhang, Mater. Des. 110, 676–684 (2016)

    CAS  Google Scholar 

  56. D. VandenBossche, Ultimate Strength and Failure Mode of Spot Welds in High Strength Steels, SAE Technical Paper, 770214 (1977)

  57. M. Pouranvari, S.P.H. Marashi, Mater. Sci. Eng. A 528, 8337–8343 (2011)

    CAS  Google Scholar 

  58. M. Marya, K. Wang, L.G. Hector, X. Gayden, J. Manuf. Sci. Eng. 128, 287–298 (2006)

    Google Scholar 

  59. S. Majumdar, D. Bhattacharjee, K.K. Ray, Scripta Mater. 64, 288–291 (2011)

    CAS  Google Scholar 

  60. L.C.R. Lopes, J. Charlier, Mater. Sci. Eng. A 169, 67–77 (1993)

    Google Scholar 

  61. G. Janardhan, K. Kishore, G. Mukhopadhyay, K. Dutta, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00678-w

    Article  Google Scholar 

  62. M.N. James, Eng. Fract. Mech. 77, 1998–2007 (2010)

    Google Scholar 

  63. D. Hull, D.J. Bacon, Introduction to Dislocations, 3rd edn. (Pergamon Press, Oxford, 1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Kishore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, K., Kumar, P. & Mukhopadhyay, G. Microstructure, Tensile and Fatigue Behaviour of Resistance Spot Welded Zinc Coated Dual Phase and Interstitial Free Steel. Met. Mater. Int. 28, 945–965 (2022). https://doi.org/10.1007/s12540-020-00939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00939-8

Keywords

Navigation