Skip to main content
Log in

Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study evaluates the role of the microstructure in the static and dynamic mechanical behavior of as-cast Al7075 alloy promoted by ultrasonic treatment (US) during solidification. The characterization of samples revealed that US treatment promoted grain and intermetallics refinement, changed the shape of the intermetallic phases (equilibrium phases of soluble M and/or T (Al, Cu, Mg, Zn) and their insoluble Al-Cu-Fe compounds) and lead to their uniform distribution along the grain boundaries. Consequently, the mechanical properties and damping capacity above critical strain values were enhanced by comparison with values obtained for castings produced without US vibration. This results suggest that the grain and secondary phases refinement by US can be a promising solution to process materials to obtain high damping and high strength characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Liu, Q. Wang, Y. Sui, Q. Wang, and W. Ding, Mater. Des. 68, 8 (2015).

    Article  Google Scholar 

  2. H. Puga, J. Barbosa, N. Q. Tuan, and F. Silva, Trans. Nonferrous Met. Soc. China 24, 3459 (2014).

    Article  Google Scholar 

  3. G. I. Eskin and D. G. Eskin, Ultrasonic Treatment of Light Alloy Melt, CRC Press, Boca Raton (2014).

    Book  Google Scholar 

  4. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, and M. Prokic, J. Mater. Process. Technol. 211, 1729 (2011).

    Article  Google Scholar 

  5. N. Ono, R. Nowak, and S. Miura, 2004. Mater. Lett. 58, 39 (2004).

    Google Scholar 

  6. X. Li, S. M. Xiong, and Z. Guo, J. Mater. Sci. Technol. 32, 54 (2016).

    Article  Google Scholar 

  7. J. Zhang, M. N. Gungor, and E. J. Lavernia, J. Mater. Sci. 28, 1515 (1993).

    Article  Google Scholar 

  8. M. Colakoglu, J. Theor. Appl. Mech. 42, 95(2004).

    Google Scholar 

  9. W. B. Jiang, Q. P. Kong, P. Cui, Mater. Sci. Eng. A 527, 6028 (2010).

    Article  Google Scholar 

  10. M. Blanter, I. Golovin, H. Neuhauser, and H. Sinning, Internal Friction in Metallic Materials, Springer, New York (2007).

    Google Scholar 

  11. A. J. Filmer, G. J. Hutton, and T. S. Hutchison, J. Appl. Phys. 29, 146 (1958).

    Article  Google Scholar 

  12. A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  Google Scholar 

  13. L. Lihua, Z. Xiuqin, L. Xianfeng, W. Haowei, and M. Naiheng, Mater. Lett. 61, 231 (2007).

    Article  Google Scholar 

  14. H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa, and K. Higashi, Philos. Mag. 91, 4158 (2011).

    Article  Google Scholar 

  15. G. D. Fan, M. Y. Zheng, X. S. Hu, K. Wu, W. M. Gan, and H. G. Brokmeier 2013. Mater. Sci. Eng. A 561, 100 (2013).

    Article  Google Scholar 

  16. R. H. Randall and C. Zener, Phys. Rev. 58, 472 (1940).

    Article  Google Scholar 

  17. X. Cao and C. Huang, Mater. Sci. Eng. A 383, 341 (2004).

    Article  Google Scholar 

  18. Y. Chen, Q. Wang, J. Lin, M. Liu, J. Hjelen, and H. J. Roven, Trans. Nonferrous Met. Soc. China 24, 3747 (2014).

    Article  Google Scholar 

  19. Y. C. Lee, A. K. Dahle, and D. H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000).

    Article  Google Scholar 

  20. N. Q. Tuan, H. Puga, H. J. Barbosa, and A. M. P. Pinto, Met. Mater. Int. 21, 72 (2015).

    Article  Google Scholar 

  21. Y. Ali, D. Qiu, B. Jiang, F. Pan, and M. X. Zhang, J. Alloys Compd. 619, 639 (2015).

    Article  Google Scholar 

  22. W. Khalifa, Y. Tsunekawa, and M. Okumiya, J. Mater. Process. Technol. 210, 2178 (2010).

    Article  Google Scholar 

  23. H. Puga, J. Barbosa, S. Costa, S. Ribeiro, A. M. P. Pinto, and M. Prokic, Mater. Sci. Eng. A 560, 589 (2013).

    Article  Google Scholar 

  24. S. T. Lim, I. S. Eun, and S. W. Nam, Mater. Trans. 44, 181 (2003).

    Article  Google Scholar 

  25. L. Chesini, I. Boromei, A. Morri, S. Seifeddine, I. L. Svensson, J. Mater. Process. Technol. 209, 5669 (2009).

    Article  Google Scholar 

  26. X. Su, S. J. Wang, X. OuYang, P. Song, G. M. Xu, and D. H. Jiang. Mater. Sci. Eng. A 607, 10 (2014).

    Article  Google Scholar 

  27. F. Rikhtegar and M. Ketabchi, Mater. Des. 31, 3943 (2010).

    Article  Google Scholar 

  28. J. Gittus, Creep, Viscoelasticity, and Creep Fracture in Solids, Wiley, New York (1975).

    Google Scholar 

  29. A. Wolfenden and J. Wolla, J. Mater. Sci. 24, 3205 (1989).

    Article  Google Scholar 

  30. X. S. Hu, K. Wu, M. Y. Zheng, W. M. Gan, and X. J. Wang, Mater. Sci. Eng. A 452, 374 (2007).

    Article  Google Scholar 

  31. K. Nishiyama, R. Matsui, Y. Ikeda, S. Niwa, and T. Sakaguchi, 2003. Proc. Int. Symp. High Damping Mater. 355, 22 (2003).

    Google Scholar 

  32. D. Shenglong, L. Dabo, W. Tianzhen, and L. Chunyu, J. Mater. Sci. 33, 2227 (1988).

    Article  Google Scholar 

  33. M. Tanaka and H. Iizuka, J. Mater. Sci. 26, 4389 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Puga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puga, H., Carneiro, V.H., Barbosa, J. et al. Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys. Met. Mater. Int. 22, 863–871 (2016). https://doi.org/10.1007/s12540-016-6073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6073-y

Keywords

Navigation