Skip to main content
Log in

Pre-aging time dependence of microstructure and mechanical properties in nanostructured Al-2wt%Cu alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This work is focused on the effect of pre-aging time on the properties of Al-2wt%Cu alloy processed by accumulative roll bonding (ARB) process. Following aged at 190 °C for 10 or 30 min, the samples were deformed up to a strain of 4.8 by the ARB process. The microstructure evolution was investigated by transmission electron microscope and electron backscattering diffraction analyzes. The results showed that the Al2Cu precipitates were formed with different sizes due to the different pre-aging times and the finer precipitates were more effective on the formation of high angle grain boundaries during the ARB process. The grain size of Aged-10 min and Aged-30 min specimens decreased to 400 nm and 420 nm, respectively, after 6 cycles of the ARB process. Also, the final texture after 6 cycles of the ARB process, shown in the {111} pole figure, were different depending on the starting microstructures. The mechanical properties of specimens were investigated by the Vickers microhardness measurements and the tensile tests. The results showed that the mechanical properties are affected by the starting microstructure. The mechanical properties of Aged-10 min specimen were different compared to Aged-30 min specimen due to the different size of the pre-existing precipitates. Although by continuing process, the precipitates were probably dissolved due to the heavy deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Azad and E. Borhani, J. Min. Metall. Sect. B (In press).

  2. E. Borhani, H. Jafarian, H. Adachi, D. Terada, and N. Tsuji, J. Mater. Sci. Forum 667-669, 211 (2010).

    Article  Google Scholar 

  3. R. Z. Valiev and T. G. Langdon, Prog. Mater. 51, 881, (2006).

    Article  Google Scholar 

  4. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  5. M. Richert, Q. Liu, and N. Hansen, Mater. Sci. Eng. A 260, 27 (1999).

    Article  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater. 47, 579 (1999).

    Article  Google Scholar 

  7. E. Borhani, H. Jafarain, A. Shibata, and N. Tsuji, J. Mater. Trans. 53, 1863 (2012).

    Article  Google Scholar 

  8. S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Mater. Sci. Eng. A 325, 228 (2002).

    Article  Google Scholar 

  9. V. D. Cojocaru, D. Raducanu, D. M. Gordin, and I. Cinca, J. Alloy Compd. 546, 260 (2013).

    Article  Google Scholar 

  10. E. Borhani, H. Jafarian, D. Terada, H. Adachi, and N. Tsuji, Mater. Trans. 53, 72 (2011).

    Article  Google Scholar 

  11. E. Borhani, H. Jafarian, T. Sato, D. Terada, Y. Miyajima, and N. Tsuji, Proc. 12th Intern. Conf. on Al. Alloy, p.2168, Japan (2010).

    Google Scholar 

  12. B. K. Min, H. W. Kim, and S. B. Kang, J. Mater. Proc. Tech. 162-163, 355 (2005).

    Article  Google Scholar 

  13. N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani, Mater. Sci. Eng. A 350, 108 (2003).

    Article  Google Scholar 

  14. J. M. Silcock, T. J. Heal, and H. K. Hardy, J. Inst. Met. 82, 239 (1953-1954).

    Google Scholar 

  15. A. Biswas, D. J. Siegel, C. Wolverton, and D. N. Seidman, Acta Mater. 59, 6187 (2011).

    Article  Google Scholar 

  16. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, Mater. Sci. Eng. A 340, 265 (2003).

    Article  Google Scholar 

  17. B. G. Clark, I. M. Robertson, and L. M. Dougherty, Mater. Res. 20, 1792 (2005).

    Article  Google Scholar 

  18. F. Salimyanfard, M. Reza Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mater. Sci. Eng. A 528, 5348 (2011).

    Article  Google Scholar 

  19. C. Xu, M. Furukawa, Z. Horita, and T. G. Langdon, Acta Mater. 51, 6139 (2003).

    Article  Google Scholar 

  20. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta Mater. 46, 3317 (1998).

    Article  Google Scholar 

  21. K.-T. Park, H.-J. Kwon, W.-J. Kim, and Y.-S. Kim, Mater. Sci. Eng. A 316, 145 (2001).

    Article  Google Scholar 

  22. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, Mater. Sci. Eng. A 340, 265 (2003).

    Article  Google Scholar 

  23. L. S. Toropova, D. G. Eskin, M. L. Kharakterova, and T. V. Dobatkina, Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science, The Netherlands (1998).

    Google Scholar 

  24. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, pp.73–87, Pergamon Press, Oxford (1995).

    Google Scholar 

  25. Z. Horita, K. Oh-ishi, and K. Kaneko, Sci. Tech. Adv. Mater. 7, 649 (2006).

    Article  Google Scholar 

  26. G. F. Carter and D. E. Paul, Materials Science and Engineering, p.81, Materials Park, ASM International, Ohio (1991).

    Google Scholar 

  27. B. Azad and E. Borhani, J. Mat. Eng. Per. 24, 4789 (2015).

    Article  Google Scholar 

  28. K. T. Park, H. J. Kwon, W. J. Kim, and Y. S. Kim, Mater. Sci. Eng. A 316, 145 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Azad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, B., Borhani, E. Pre-aging time dependence of microstructure and mechanical properties in nanostructured Al-2wt%Cu alloy. Met. Mater. Int. 22, 243–251 (2016). https://doi.org/10.1007/s12540-016-5510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5510-2

Keywords

Navigation