Skip to main content
Log in

Springback evaluation of friction stir welded TWB automotive sheets

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Springback behavior of automotive friction stir welded TWB (tailor welded blank) sheets was experimentally investigated and the springback prediction capability of the constitutive law was numerically validated. Four automotive sheets, aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase DP590 steel sheets, each having one or two different thicknesses, were considered. To represent mechanical properties, the modified Chaboche type combined isotropic-kinematic hardening law was utilized along with the non-quadratic orthogonal anisotropic yield function, Yld2000-2d, while the anisotropy of the weld zone was ignored for simplicity. For numerical simulations, mechanical properties previously characterized [1] were applied. For validation purposes, three springback tests including the unconstrained cylindrical bending, 2-D draw bending and OSU draw-bend tests were carried out. The numerical method performed reasonably well in analyzing all verification tests and it was confirmed that the springback of TWB as well as of base samples is significantly affected by the ratio of the yield stress with respect to Young’s modulus and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chung, W. Lee, D. Kim, J. Kim, K.-H. Chung, C. Kim, K. Okamoto, and R. H. Wagoner, Int. J. Solids Struct. 47, 1048 (2010).

    Article  Google Scholar 

  2. M. W. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, GB Patent Applications No. 9125978.8 (1991); US Patent No. 5460317 (1995).

  3. B. London, M. Mahoney, W. Bingel, M. Calabrese, R. H. Bossi, and D. Waldron, Friction Stir Welding and Processing II (eds., K. V. Jata et al.), p. 3, A Publication of TMS, Warrendale, PA, U.S.A. (2003).

    Google Scholar 

  4. A. P. Reynolds and W. Tang, Friction Stir Welding and Processing I (eds., K.V. Jata et al.), p. 15, TMS, Warrendale, PA, U.S.A. (2003).

    Google Scholar 

  5. K. M. Zhao, B. K. Chun, and J. K. Lee, Finite Elem. Anal. Des. 37, 117 (2001).

    Article  Google Scholar 

  6. S. H. Chang, J. M. Shin, Y. M. Heo, D. G. Seo, J. Mater. Process. Technol. 130–131, 14 (2003).

    Google Scholar 

  7. X. Zhou, M. S. Thesis, Carleton University, Ottawa, ON, Canada (1999).

  8. Y.-S. Song, D.-W. Kim, H.-S. Yang, S.-H. Han, K.-G. Ching, and S.-H. Choi, Kor. J. Met. Mater. 47, 274 (2009).

    CAS  Google Scholar 

  9. K. Chung, M.-G. Lee, D. Kim, C. Kim, M. L. Wenner, and F. Barlat, Int. J. Plasticity 21, 861 (2005).

    Google Scholar 

  10. M.-G. Lee, D. Kim, C. Kim, M. L. Wenner, R. H. Wagoner, and K. Chung, Int. J. Plasticity 21, 883 (2005).

    CAS  Google Scholar 

  11. M.-G. Lee, D. Kim, C. Kim, M. L. Wenner, and K. Chung, Int. J. Plasticity 21, 915 (2005).

    Article  Google Scholar 

  12. F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, S.-H. Choi, F. Pourboghrat, E. Chu, and D. J. Lege, Int. J. Plasticity 19, 1297 (2003).

    Article  CAS  Google Scholar 

  13. NUMISHEET 2002 Benchmark Problem, Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju Island, Korea (2002).

  14. NUMISHEET’93 Benchmark Problem, Proceedings of 2nd International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes-Verification of Simulation with Experiment, Isehara, Japan (1993).

  15. W. D. Carden, L. M. Geng, D. K. Matlock, and R. H. Wagoner, Int. J. Mech. Sci. 44, 79 (2002).

    Article  Google Scholar 

  16. J. F. Wang, R. H. Wagoner, W. D. Carden, D. K. Matlock, and F. Barlat, Int. J. Plasticity 20, 2209 (2004).

    Article  CAS  Google Scholar 

  17. W. Prager, J. Appl. Mech. — Trans. ASME 23, 493 (1956).

    Google Scholar 

  18. H. Zigler, Quarter. Appl. Math. 7, 55 (1959).

    Google Scholar 

  19. J. L. Chaboche, Int. J. Plasticity 2, 149 (1986).

    Article  Google Scholar 

  20. J. L. Chaboche, Int. J. Plasticity 7, 661 (1991).

    Article  CAS  Google Scholar 

  21. K. Chung and O. Richmond, Int. J. Plasticity 9, 907 (1993).

    Article  Google Scholar 

  22. J. W. Yoon, F. Barlat, R. Dick, K. Chung, and T. J. Kang, Int. J. Plasticity 20, 495 (2004).

    Article  CAS  Google Scholar 

  23. K. Chung, Ph. D. Thesis, Stanford University, Stanford CA, U.S.A. (1984).

  24. J. C. Simo and T. R. J. Hughes, Computational Inelasticity, Springer-Verlag, New York (1997).

    Google Scholar 

  25. J. W. Yoon, D. Y. Yang, and K. Chung, Comput. Meth. Appl. Mech. Eng. 174, 23 (1999).

    Article  Google Scholar 

  26. S. W. Lee and D. Y. Yang, J. Mater. Process. Technol. 80–81, 60 (1998).

    Article  Google Scholar 

  27. K. Abdullah, P. M. Wild, J. J. Jeswiet, and A. Ghasempoor, J. Mater. Process. Technol. 112, 91 (2001).

    Article  CAS  Google Scholar 

  28. M.-G. Lee, S. J. Kim, R. H. Wagoner, K. Chung, and H. Y. Kim, Int. J. Plasticity 25, 70 (2009).

    Article  CAS  Google Scholar 

  29. N. Abedrabbo, M. A. Zampaloni, and F. Pourboghrat, Int. J. Mech. Sci. 47, 333 (2005).

    Article  Google Scholar 

  30. E. Nakamachi, C. Xie, and M. Harimoto, Int. J. Mech. Sci. 43, 631 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwansoo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Lee, W., Chung, KH. et al. Springback evaluation of friction stir welded TWB automotive sheets. Met. Mater. Int. 17, 83–98 (2011). https://doi.org/10.1007/s12540-011-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0212-2

Keywords

Navigation