Skip to main content
Log in

Change in Glutenin Macropolymer Secondary Structure in Wheat Sourdough Fermentation by FTIR

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Wheat sourdough was prepared by fermentation with Lactobacillus plantarum M616 and yeast in the present study. The change in secondary structure of glutenin macropolymer (GMP) in wheat sourdough fermentation for 4 and 12 h was determined using Fourier transform infrared spectroscopy, and then the resultant spectra were Fourier self-deconvoluted of the amide I band in the region from 1600 to 1700 cm−1. Significant different spectra especially in the amide I band for GMP from sourdough fermented with L. plantarum M616 (SL) and with L. plantarum M616 and yeast (SLY) were found in respect of control dough (CK), dough with acids (SA), and sourdough fermented with yeast (SY) at 4 and 12 h of fermentation. The loss of α-helix structure in SL, SLY, and SA samples was noticed during fermentation. Compared with CK and SY, SL, SLY, and SA samples showed significant decrease (p < 0.05) in the relative areas of α-helix at the same stage of fermentation. In addition, β-turns in SL sourdough decrease, and the relative areas of random coil increase significantly (p < 0.05). These changes in the secondary structure mean that the flexibility of glutenin macropolymer in sourdough increases and it makes GMP degradation easier during fermentation. The modified secondary structure of GMP makes more sensitive to proteolysis by means of cereal enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  PubMed  Google Scholar 

  2. Decock P, Capelle S (2005) Bread technology and sourdough technology. Trends Food Sci Technol 16:113–120

    Article  CAS  Google Scholar 

  3. Katina K, Poutanen K (2013) Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, New York, pp 229–244

    Chapter  Google Scholar 

  4. Gobbetti M, Rizzello CG, Cagno RD, Angelis MD (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40

    Article  CAS  PubMed  Google Scholar 

  5. Coda R, Cagno RD, Gobbetti M, Rizzello CG (2014) Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiol 37:51–58

    Article  CAS  PubMed  Google Scholar 

  6. Mantsch HH, Perczel A, Hollosi M, Fasman GD (1993) Characterization of β-turns in cyclic hexapeptides in solution by Fourier transform IR spectroscopy. Biopolymers 33:201–207

    Article  CAS  PubMed  Google Scholar 

  7. Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32:389–394

    Article  CAS  PubMed  Google Scholar 

  8. Shen T, Wang JY (1990) Biochemistry. Higher Education Press, Beijing, pp 140–150 (in Chinese)

    Google Scholar 

  9. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101

    Article  CAS  Google Scholar 

  10. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  PubMed  Google Scholar 

  11. Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta 952:115–130

    Article  CAS  PubMed  Google Scholar 

  12. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    Article  Google Scholar 

  13. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  14. Cagno DR, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  PubMed  PubMed Central  Google Scholar 

  15. Loponen J, Kanerva P, Zhang C, Sontag-Strohm T, Salovaara H, Gänzle MG (2009) Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 57:746–753

    Article  CAS  PubMed  Google Scholar 

  16. Yin YL, Wang JS, Yang S, Feng JL, Jia F, Zhang CF (2015) Protein degradation in wheat sourdough fermentation with Lactobacillus plantarum M616. Interdiscip Sci Comput Life Sci 7:205–210

    Article  CAS  Google Scholar 

  17. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119

    Article  CAS  PubMed  Google Scholar 

  18. Carceller JL, Aussenac T (2001) Size characterisation of glutenin polymers by HPSEC-MALLS. J Cereal Sci 33:131–142

    Article  CAS  Google Scholar 

  19. Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ (2003) Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. J Cereal Sci 38(2):157–165

    Article  CAS  Google Scholar 

  20. Don C, Lichtendonk W, Plijter JJ, Hamer RJ (2003) Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci 37(1):1–7

    Article  CAS  Google Scholar 

  21. Graveland A, Bosveld P, Lichtendonk WJ, Moonen JHE (1982) Extraction and fractionation of wheat flour proteins. J Sci Food Agric 33:1117–1128

    Article  CAS  Google Scholar 

  22. Gao YT, Li J, Ci YX (2000) FTIR assessment of the secondary structure of proteins in human breast carcinoma tissues. J Anal Sci 16(5):353–357 (in Chinese)

    CAS  Google Scholar 

  23. Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  24. Singh BR, Fuller MP, Schiavo G (1990) Molecular structure of tetanus neurotoxin as revealed by fourier transform infrared and circular dichroic spectroscopy. Biophys Chem 36(2):155–166

    Article  CAS  PubMed  Google Scholar 

  25. Parker FS (1971) Carbohydrates. Applications of infrared spectroscopy in biochemistry. Biology and medicine. Plenum Press, New York, pp 102–106

    Chapter  Google Scholar 

  26. Shingel KI (2002) Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier transform IR spectroscopy. Carbohydr Res 337:1445–1451

    Article  CAS  PubMed  Google Scholar 

  27. Zhbankov RG, Firsov SP, Korolik EV, Petrov PT, Lapkovski MP, Tsarenkov VM, Marchewka MK, Ratajczak H (2000) Vibrational spectra and the structure of medical biopolymers. J Mol Struct 555:85–96

    Article  CAS  Google Scholar 

  28. Arrondo JLR, Muga A, Castersana J (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol 59:23–56

    Article  CAS  PubMed  Google Scholar 

  29. Dousseau F, Pézolet M (1990) Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 29(37):8771–8779

    Article  CAS  PubMed  Google Scholar 

  30. Mangavel C, Barbot J, Popineau Y, Gue J (2001) Evolution of wheat gliadins conformation during film formation: a Fourier transform infrared study. J Agric Food Chem 49:867–872

    Article  CAS  PubMed  Google Scholar 

  31. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein-structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  CAS  PubMed  Google Scholar 

  32. Thiele C, Grassl S, Gänzle MG (2004) Gluten hydrolysis and depolymerization during sourdough fermentation. J Agric Food Chem 52:1307–1314

    Article  CAS  PubMed  Google Scholar 

  33. Bleukx W, Roels SP, Delcour JA (1997) On the presence and activities of proteolytic enzymes in vital wheat gluten. J Cereal Sci 26:183–193

    Article  CAS  Google Scholar 

  34. Bleukx W, Delcour JA (2000) A second aspartic proteinase associated with wheat gluten. J Cereal Sci 32:31–42

    Article  CAS  Google Scholar 

  35. Berg RW, Sandine WE, Anderson AW (1981) Identification of a growth stimulant for Lactobacillus sanfrancisco. Appl Environ Microbiol 42:786–788

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thanks for the financial support of National Key Research and Development Program (2016YFD0400200), National Natural Science Foundation of China (31571780), and Natural Science Project of Henan Science and Technology Department (162102210193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yue, Y., Liu, T. et al. Change in Glutenin Macropolymer Secondary Structure in Wheat Sourdough Fermentation by FTIR. Interdiscip Sci Comput Life Sci 9, 247–253 (2017). https://doi.org/10.1007/s12539-016-0206-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0206-3

Keywords

Navigation