Skip to main content
Log in

Evaluation and Elucidation Studies of Natural Aglycones for Anticancer Potential using Apoptosis-Related Markers: An In silico Study

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Exposure to exogenous and endogenous chemicals and subsequent cellular and molecular changes has been linked to enhanced cell proliferation and restricted apoptosis phenomenon. Though in the past decades numerous anticancer drugs inducing programmed cell death in cancer cells by targeting specific apoptotic markers have reached the market, they have been allied with unwanted side effects, ranging from mild to severe toxicity. With further understanding on the functional mechanism of p53 and MDM2 in apoptosis and in our continuous search for new and potent multi-target anticancer lead compounds, we have carried out molecular docking and inhibition studies of the selected aglycones along with selected anticancer leads, against the specific apoptotic and cell cycle markers using AutoDock Tools 4.0 and other computational softwares. The docking results have been analyzed in terms of binding energies (kcal/mol) and inhibition constant (µM). The study clearly proposes our aglycones [solanidine (Solanid-5-en-3β-ol), solasodine (Solasod-5-en-3β-ol), and tomatidine (5α-Tomatidan-3β-ol)] induce apoptosis by inhibiting the p53–MDM2 complex, p21Waf1/Cip1, and Bcl-2 proteins, which were even found comparable with the anticancer drugs nutlin and/or halofuginone. The work further emphasizes that the individual molecular targets such as BAX and Bcl-2 may result in misleading data at any level; however, ratio of responses to BAX and Bcl-2 shall be considered for better clue about a compound to be pro- or anti-apoptotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pratheeshkumar P, Thejass P, Kutan G (2010) Diallyl disulfide induces caspase-dependent apoptosis via mitochondria-mediated intrinsic pathway in B16F-10 melanoma cells by up-regulating p53, caspase-3 and down-regulating pro-inflammatory cytokines and nuclear factor-κβ-mediated Bcl-2 activation. J Environ Pathol Toxicol Oncol 29(2):113–125

    Article  CAS  PubMed  Google Scholar 

  2. Muhamad S, Hawariah A, Pihie L, Latif J, Rha C, Sambandan TG (2011) Induction of apoptosis in MCF-7 via the Caspase pathway by longilactone from Eurycomalongifolia Jack. Res Pharma Biotech 3:1–10

    CAS  Google Scholar 

  3. Park SK, Sanders BG, Kline K (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 124(2):361–375

    Article  CAS  PubMed  Google Scholar 

  4. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76(11):1340–1351

    Article  CAS  PubMed  Google Scholar 

  5. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  6. Bouchet BP, de Fromentel CC, Puisieux A, Galmarini CM (2006) p53 as a target for anti-cancer drug development. Crit Rev Oncol Hemat 58:190–207

    Article  Google Scholar 

  7. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  8. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  CAS  PubMed  Google Scholar 

  9. Petros AM, Gunasekeraa A, Xua N, Olejniczaka ET, Fesika SW (2004) Defining the p53 DNA-binding domain/Bcl-xL-binding interface using NMR. FEBS Lett 559:171–174

    Article  CAS  PubMed  Google Scholar 

  10. Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM (1999) Bcl-2 overexpression results in reciprocal downregulation of Bcl-X(L) and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene 18:1457–1464

    Article  CAS  PubMed  Google Scholar 

  11. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  CAS  PubMed  Google Scholar 

  12. Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cordon-Cardo C, Latres E, Drobujak M, Oliva MR, Pollack D, Woodruff JM, Marechal V, Chen J, Brennan MF, Levine AJ (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 54:794–799

    CAS  PubMed  Google Scholar 

  15. Wang W, Hu Y (2012) Small molecule agents targeting the p53–MDM2 pathway for cancer therapy. Med Res Rev 32(6):1159–1196

    Article  CAS  PubMed  Google Scholar 

  16. Tabernero J, Dirix L, Schoffski P, Cervantes A, Capdevila J, Baselga J, van Beijsterveldt L, Winkler H, Kraljevic S, Zhuang SH (2009) Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of HDM-2 antagonist JNJ-26854165 in patients with advanced refractory solid tumors. J Clin Oncol 27:15s (suppl; abstr 3514)

  17. Akhtar S, Al-Sagair OA, Arif JM (2011) Novel aglycones of steroidal glycoalkaloids as potent tyrosine kinase inhibitors: role in VEGF and EGF receptors targeted angiogenesis. Lett Drug Des Discov 8:205–215

    Article  CAS  Google Scholar 

  18. ArifJM SiddiquiMH, Akhtar S, Al-Sagair O (2013) Exploitation of in silico potential in prediction, validation and elucidation of mechanism of anti-angiogenesis by novel compounds: comparative correlation between wet lab and in silico data. Int J Bioinf Res App 9(4):236–248

    Google Scholar 

  19. Al-Khodairy FM, Khan MKA, Kunhi M, Pulicat MS, Akhtar S, Arif JM (2013) In Silico prediction of mechanism of Erysolin-induced apoptosis in human breast cancer cell lines. Am J Bioinfo Res 3(3):62–71

    Google Scholar 

  20. Khan MKA, Siddiqui MH, Akhtar S, Ahmad K, Baig MH, Osama K (2015) Screening of plant-derived natural compounds as potent chemotherapeutic agents against breast cancer: an in silico approach. J Chem Pharm Res 7(1):519–526

    CAS  Google Scholar 

  21. Korpan YI, Nazarenko EA, Skryshevskaya IV, Martelet C, Jaffrezic-Renault N, El’skaya AV (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22:147–151

    Article  CAS  PubMed  Google Scholar 

  22. Bushway RJ (1983) Sources of alkaloid and glycoalkaloid standards for potato breeding programs and other research. Am Potato J 60:793–797

    Article  CAS  Google Scholar 

  23. Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Chang JS, Friedman M (2004) Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 52:2832–2839

    Article  CAS  PubMed  Google Scholar 

  24. Van Gelder WMJ (1990) Chemistry, toxicology, and occurrence of steroidal glycoalkaloids: potential contaminants of the potato. In: Rizk AF (ed) Poisonous plants contaminating edible plants. CRC, Boca Raton, pp 117–156

    Google Scholar 

  25. de Figueiredo-Pontes LL, Assis PA, Santana-Lemos BA, Jácomo RH, Lima AS, Garcia AB, Thome CH, Araujo AG, Panepucci RA, Zago MA, Nagler A, Falcao RP, Rego EM (2011) Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor Beta signaling pathway. PLoS ONE 6(10):e26713

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  27. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel application of AutoDock. 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  28. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into Protein–Ligand interactions: mechanisms, models, and methods. Int J Mol Sci. doi:10.3390/ijms17020144

    Google Scholar 

  31. Paquet E, Viktor HL (2015) Molecular dynamics, montecarlo simulations, and langevin dynamics: a computational review. Biomed Res Int. doi: 10.1155/2015/183918. Epub 2015 Feb 16

  32. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  33. Gavish Z, Pinthus JH, Barak V, Ramon J, Nagler A, Eshhar Z, Pines M (2002) Growth inhibition of prostate cancer xenografts by halofuginone. Prostate 51(2):73–83

    Article  CAS  PubMed  Google Scholar 

  34. Dickens MP, Fitzgerald R, Fischer PM (2010) Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol 20(1):10–18

    Article  CAS  PubMed  Google Scholar 

  35. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ (1996) Strucutre of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  36. Fry D, Graves B, Vassilev LT (2005) Exploiting protein-protein interactions to design an activator of p53. Protein–protein interactions: a molecular cloning manual. Cold Spring Harbor Laboratory Press, New York

  37. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG (2004) Masucci, M. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328

    Article  CAS  PubMed  Google Scholar 

  38. Bullock AN, Fersht AR (2001) Rescuing the function of mutant p53. Nat Rev Cancer 1(1):68–76

    Article  CAS  PubMed  Google Scholar 

  39. Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms and consequences. Cancer Res 65(10):3980–3985

    Article  CAS  PubMed  Google Scholar 

  40. Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734

    Article  CAS  PubMed  Google Scholar 

  41. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54(13):3391–3395

    CAS  PubMed  Google Scholar 

  42. el-Deiry WS, Harper JW, O’Connor PM (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54(5):1169–1174

    CAS  PubMed  Google Scholar 

  43. Wouters BG, Giaccia AJ, Denko NC, Brown JM (1997) Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis-independent mechanism. Cancer Res 57(21):4703–4706

    CAS  PubMed  Google Scholar 

  44. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J (2011) p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30:2087–2097

    Article  CAS  PubMed  Google Scholar 

  46. Liggett WH Jr, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16(3):1197–1206

    Article  CAS  PubMed  Google Scholar 

  47. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455(7216):1076–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei MC, Zong WX, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699

    Article  CAS  PubMed  Google Scholar 

  50. Cheng E, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X-L sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  CAS  PubMed  Google Scholar 

  51. Ciardiello F, Tortora G (2002) Inhibition of bcl-2 as cancer therapy. Ann Oncol 13(4):501–502

    Article  CAS  PubMed  Google Scholar 

  52. Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16(3):360–367

    Article  CAS  PubMed  Google Scholar 

  53. Cheson BD (2007) Oblimersen for the treatment of patients with chronic lymphocytic leukemia. Ther Clin Risk Manag 3(5):855–870

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwartz PS, Manion MK, Emerson CB, Fry JS, Schulz CM, Sweet IR, Hockenbery DM (2007) 2-Methoxy antimycin reveals a unique mechanism for Bcl-x(L) inhibition. Mol Cancer Ther 6(7):2073–2080

    Article  CAS  PubMed  Google Scholar 

  55. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I (2001) The BAX/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117(2):333–340

    Article  CAS  PubMed  Google Scholar 

  56. Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V (2007) Increased BAX/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 21(1):123–132

    CAS  PubMed  Google Scholar 

  57. Schelwies K, Sturm I, Grabowski P, Scherubl H, Schindler I, Hermann S (2002) Analysis of P53/BAX in primary colorectal carcinoma: low BAX protein expression is a negative prognostic factor in UICC stage III tumors. Int J Cancer 99:589–596

    Article  CAS  PubMed  Google Scholar 

  58. Shi X, Liu S, Kleeff J, Freiss H, Buchler MW (2002) Acquired resistance of pancreatic cancer cells towards 5-fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology 62:354–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. S. W. Akhtar, Vice Chancellor of the Integral University, Lucknow, India, for providing the infrastructure facility to carry out this study. Partial financial assistance was granted by the Biotechnology Research Trust Fund (BRTF), Integral University, Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal M. Arif.

Ethics declarations

Conflict of interest

The authors unanimously declare that there is no conflict of interest at any level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, S., Khan, M.K.A. & Arif, J.M. Evaluation and Elucidation Studies of Natural Aglycones for Anticancer Potential using Apoptosis-Related Markers: An In silico Study. Interdiscip Sci Comput Life Sci 10, 297–310 (2018). https://doi.org/10.1007/s12539-016-0191-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0191-6

Keywords

Navigation