Skip to main content

Advertisement

Log in

A New Decision Tree to Solve the Puzzle of Alzheimer’s Disease Pathogenesis Through Standard Diagnosis Scoring System

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Honjo K, Black SE et al (2015) Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci 39(06):712–728

    Article  Google Scholar 

  2. Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25(6):708–714

    Article  CAS  PubMed  Google Scholar 

  3. Katzman R, Saitoh T (1991) Advances in Alzheimer’s disease. FASEB J 5(3):278–286

    CAS  PubMed  Google Scholar 

  4. Dartigues JF, Letenneur L (2000) Genetic epidemiology of Alzheimer’s disease. Curr Opin Neurol 13(4):385–389

    Article  CAS  PubMed  Google Scholar 

  5. Williams-DeVane ClarLynda R et al (2013) Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes. BMC Syst Biol 7(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  7. Hoenicka J (2005) Genes in Alzheimer’s disease. Rev Neurol 42(5):302–305

    Google Scholar 

  8. Panigrahi PP, Singh TR (2013) Computational studies on Alzheimer’s disease associated pathways and regulatory patterns using microarray gene expression and network data: revealed association with aging and other diseases. J Theor Biol 334:109–121

    Article  CAS  PubMed  Google Scholar 

  9. Scheuner D, Eckman C et al (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870

    Article  CAS  PubMed  Google Scholar 

  10. Wortmann M (2012) Dementia: a global health priority-highlights from an ADI and World Health Organization report. Alzheimers Res Ther 4(5):40

    PubMed  PubMed Central  Google Scholar 

  11. Strittmatter WJ, Saunders AM et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90(5):1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy E, Carman MD et al (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248(4959):1124–1126

    Article  CAS  PubMed  Google Scholar 

  13. Corder EH, Saunders AM et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  CAS  PubMed  Google Scholar 

  14. Hingorani AD, Liang CF et al (1999) A common variant of the endothelial nitric oxide synthase (Glu298→ Asp) is a major risk factor for coronary artery disease in the UK. Circulation 100(14):1515–1520

    Article  CAS  PubMed  Google Scholar 

  15. Heyman A, Wilkinson WE et al (1984) Alzheimer’s disease: a study of epidemiological aspects. Ann Neurol 15(4):335–341

    Article  CAS  PubMed  Google Scholar 

  16. De Mãntaras RL (1991) A distance-based attribute selection measure for decision tree induction. Mach Learn 6(1):81–92

    Article  Google Scholar 

  17. Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes in decision tree generation. Mach Learn 8(1):87–102

    Google Scholar 

  18. Maccioni RB, FarÃas G et al (2010) The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 41(3):226–231

    Article  CAS  PubMed  Google Scholar 

  19. Hastie T, Tibshirani R et al (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27(2):83–86

    Google Scholar 

  20. Jensen R, Shen Q (2007) Fuzzy-rough sets assisted attribute selection. Fuzzy Syst IEEE Trans 15(1):73–89

    Article  Google Scholar 

  21. Cuevas A, Febrero M et al (2004) An anova test for functional data. Comput Stat Data Anal 47(1):111–112

    Article  Google Scholar 

  22. Tombaugh TN, McIntyre NJ (1992) The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 40(9):922–935

    Article  CAS  PubMed  Google Scholar 

  23. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14(2):1137–1145

    Google Scholar 

  24. Quinlan JR (2014) C4. 5: programs for machine learning. Elsevier, Philadelphia

    Google Scholar 

  25. Murphy C (1998) Induced decision trees for temporal medical data. In: AMCIS 1998 proceedings, p 66

  26. Zhou Xiao Jia, Dillon Tharam S (1991) A statistical-heuristic feature selection criterion for decision tree induction. IEEE Trans Pattern Anal Mach Intell 8:834–841

    Article  Google Scholar 

  27. Erdoğan O, Aydin SY (2013) Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree. Stud Health Technol Inform 205:511–515

    Google Scholar 

  28. Gutiérrez SLM, Rivero MH, Ramírez NC, Hernández E, Aranda-Abreu GE (2014) Decision trees for the analysis of genes involved in Alzheimer’s disease pathology. J Theor Biol 357:21–25

    Article  Google Scholar 

  29. Yaneli AAM, Nicandro CR, Efrén MM, Nancy PC, Gabriel AMH (2013) Assessment of Bayesian network classifiers as tools for discriminating breast cancer pre-diagnosis based on three diagnostic methods. In: Batyrshin I, González Mendoza M (eds) Advances in artificial intelligence. Springer, Berlin, pp 419–431

    Chapter  Google Scholar 

  30. Benuskova L, Kasabov N (2008) Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2(4):319–334

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sehgal M, Singh TR (2014) Systems biology approach for mutational and site-specific structural investigation of DNA repair genes for xeroderma pigmentosum. Gene 543(1):108–117

    Article  CAS  PubMed  Google Scholar 

  32. Zhang CB, Zhu P, Yang P, Cai JQ, Wang ZL, Li QB, Bao ZS, Zhang W, Jiang T (2015) Identification of high risk anaplastic gliomas by a diagnostic and prognostic signature derived from mRNA expression profiling. Oncotarget 6(34):36643–36651

    PubMed  PubMed Central  Google Scholar 

  33. Sehgal M, Gupta R, Moussa A, Singh TR (2015) An integrative approach for mapping differentially expressed genes and network components using novel parameters to elucidate key regulatory genes in colorectal cancer. PLoS One 10(7):e0133901

    Article  PubMed  PubMed Central  Google Scholar 

  34. Piovesan D, Giollo M, Ferrari C, Tosatto SC (2015) Protein function prediction using guilty by association from interaction networks. Amino Acids 47(12):2583–2592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support from ICMR (BIC/12(33)/2012) to TRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiratha Raj Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Supplementary material 2 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, T.R. A New Decision Tree to Solve the Puzzle of Alzheimer’s Disease Pathogenesis Through Standard Diagnosis Scoring System. Interdiscip Sci Comput Life Sci 9, 107–115 (2017). https://doi.org/10.1007/s12539-016-0144-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0144-0

Keywords

Navigation