Skip to main content
Log in

Structural Interactions of Curcumin Biotransformed Molecules with the N-Terminal Residues of Cytotoxic-Associated Gene A Protein Provide Insights into Suppression of Oncogenic Activities

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Curcumin as a natural product has drawn considerable attention in recent years for its multiple pharmacological activities against various diseases, but more studies are required to understand the curcumin pharmacological action considering its low bioavailability. Though numerous reasons contribute to the low bioavailability of curcumin, one of the important reasons is associated with biotransformation of curcumin through either conjugation or reduction depending on curcumin administration route. The orally administered curcumin (CUR) is metabolised into curcumin glucuronidase (CUR-GLR) and curcumin sulphate by conjugation, whereas dihydroxycurcumin, tetrahydrocurcumin, and hexahydrocurcumin (HHC) are formed by reduction after intraperitoneal administration of curcumin. The main aim of the current study was to investigate the pharmacological properties of curcumin and its biotransformed molecules and its inhibitory potential against CagA (cytotoxic-associated gene A) oncoprotein of Helicobacter pylori. All lead molecules followed the Lipinski’s five rules for biological activities, except CUR-GLR, whereas druglikeness scores were obtained for all molecules. Subsequently, molecular docking was employed to analyse the binding affinity of molecules with CagA. The docking studies revealed that CUR-GLR has highest binding affinity with CagA, whereas less interactive affinity was observed in HHC. From the virtual screening and docking studies, the current study suggests that the biotransformation of curcumin through conjugation has more potential for inhibition of oncogenic activities of CagA+ H. pylori than reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ammon HP, Wahl MA (1999) Pharmacology of Curcuma longa. Plant Med 57:1–7

    Article  Google Scholar 

  2. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  3. Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB, Kumar NB (2012) Curcumin: a novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J of Canc Prev 21:407–412

    Article  CAS  Google Scholar 

  4. Anand P, Thomas GS, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  5. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin; biological actions and medicinal applications. Curr Sci 87:44–53

    CAS  Google Scholar 

  6. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087

    Article  CAS  PubMed  Google Scholar 

  7. Lao CD, Ruffin MT 4th, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Alter Med 6:10

    Article  Google Scholar 

  8. Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30:85–94

    Article  CAS  PubMed  Google Scholar 

  9. Hamaguchi T, Ono K, Yamada M (2010) Review: curcumin and Alzheimer’s disease. CNS Neuro Thera 16:285–297

    Article  CAS  Google Scholar 

  10. Kim J, Hyong JL, Ki WL (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    Article  CAS  PubMed  Google Scholar 

  11. Shen L, Ji HF (2012) The pharmacology of curcumin: is it the degradation products. Trends Mol Med 18:138–144

    Article  CAS  PubMed  Google Scholar 

  12. Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14:120–125

    CAS  PubMed  Google Scholar 

  13. Peek R, Blaser M Jr (2002) Helicobacter pylori and gastrointestinal tract adenocarcinoma. Nat Rev Cancer 2:28–37

    Article  CAS  PubMed  Google Scholar 

  14. Terradot L, Waksman G (2011) Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J 278:1213–1222

    Article  CAS  PubMed  Google Scholar 

  15. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, Yamada G, Azuma T, Hatakeyama M (2008) Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. PNAS 105:1003–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rohde M, Püls J, Buhrdorf R, Fischer W, Haas R (2003) A novel sheathed surface organelle of the Helicobacter pylori Cag type IV secretion system. Mol Microbiol 49:219–234

    Article  CAS  PubMed  Google Scholar 

  17. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M (2007) Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26:4617–4626

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira MJ, Costa AM, Costa AC, Ferreira RM, Sampaio P, Machado JC, Seruca R, Mareel M, Figueiredo C (2009) CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis 200:745–755

    Article  CAS  PubMed  Google Scholar 

  19. Angelini A, Tosi T, Mas P, Acajjaoui S, Zanotti G, Terradot L, Hart DJ (2009) Expression of Helicobacter pylori CagA domains by library based construct screening. FEBS J 276:816–824

    Article  CAS  PubMed  Google Scholar 

  20. Odenbreit S, Gebert B, Püls J, Fischer W, Haas R (2001) Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. Cell Microbiol 3:21–31

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan-Turkoz B, Jimenez-Soto LF, Dian C, Erlt C, Remaut H, Louche A, Tosi T, Haas R, Terradot L (2012) Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. PNAS 109:14640–14645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatakeyama M (2004) Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4:688–694

    Article  CAS  PubMed  Google Scholar 

  23. Nesić D, Miller MC, Quinkert ZT, Stelin M, Chait BT, Stebbins CE (2010) Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol 17:130–132

    Article  PubMed  Google Scholar 

  24. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333

    Article  CAS  PubMed  Google Scholar 

  25. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL (2011) Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. PNAS 108:9238–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM, Ito Y Jr, Chen LF (2010) Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 29:5643–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, Peek RM, Blanke SR, Chen LF (2009) Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10:1242–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu PI, Wu DC, Chen WC, Tseng HH, Yu HC, Wang HM, Kao SS, Lai KH, Chen A, Tsay FW (2014) Comparison of 7-day triple, 10-day sequential and 7-day concomitant therapies for Helicobacter pylori infection-randomized controlled trial. Antimicrob Agents Chemother. doi:10.1128/AAC.02922-14

    Google Scholar 

  29. Armuzzi A, Cremonini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Anti M, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A (2011) The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 15:163–169

    Article  Google Scholar 

  30. Patel JK, Patel MM (2007) Stomach specific anti-Helicobacter pylori therapy: preparation and evaluation of amoxicillin-loaded chitosan mucoadhesive microspheres. Curr Drug Deliv 4:41–50

    Article  CAS  PubMed  Google Scholar 

  31. Bardonnet PL, Faivre V, Boullanger P, Piffaretti JC, Falson F (2008) Pre-formulation of liposomes against Helicobacter pylori: characterization and interaction with the bacteria. Eur J Pharm Biopharm 69:908–922

    Article  CAS  PubMed  Google Scholar 

  32. Obonyo M, Zhang L, Thamphiwatana S, Pornpattananangkul D, Fu V, Zhang L (2012) Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol Pharm 9:2677–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wueppenhorst N, Stueger HP, Kist M, Glocker E (2009) Identification and molecular characterization of triple- and quadruple-resistant Helicobacter pylori clinical isolates in Germany. J Antimicrob Chemother 63:648–653

    Article  CAS  PubMed  Google Scholar 

  34. Myllyluoma EL, Veijola T, Ahlroos S, Tynkkynen E, Kankuri H, Vapaatalo H, Rautelin R, Korpela R (2005) Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy-a placebo-controlled, double-blind randomized pilot study. Aliment Pharmacol Ther 21:63–72

    Article  Google Scholar 

  35. Broutet N, Tchamgoue S, Pereira E, Lamouliatte H, Salamon R, Megraud F (2003) Risk factors for failure of Helicobacter pylori therapy-results of an individual data analysis of 2751 patients. Aliment Pharmacol Ther 17:99–109

    Article  CAS  PubMed  Google Scholar 

  36. Wong WM, Gu Q, Lam SK, Fung FMY, Lai KC, Hu WHC, Yee YK, Chan CK, Xia HHX, Yuen MF, Wong BCY (2003) Randomized controlled study of rabeprazole, levofloxacin and rifabutin triple therapy vs. quadruple therapy as second-line treatment for Helicobacter pylori infection. Aliment Pharmacol Ther 17:553–560

    Article  CAS  PubMed  Google Scholar 

  37. Zaidi SFH, Yamamoto T, Refaat A, Ahmed K, Sakurai H, Saiki I, Kondo T, Usmanghani K, Kadowaki M, Sugiyama T (2009) Modulation of activation-induced cytidine deaminase by curcumin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter 14:588–595

    Article  CAS  PubMed  Google Scholar 

  38. Kundu P, De R, Pal I, Mukhopadhyay AK, Saha DR, Swarnakar S (2011) Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice. PLoS One 6:e16306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Negi N, Prakash P, Gupta ML, Mohapatra TM (2014) Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagn Res 8:DC04–DC07

    PubMed  PubMed Central  Google Scholar 

  40. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesion. Anticanc Res 21:2895–2900

    CAS  Google Scholar 

  41. Sharma RA, McLelland HR, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900

    CAS  PubMed  Google Scholar 

  42. De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB, Mukhopadhyay AK (2009) Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicro Agents and Chemother 53:1592–1597

    Article  CAS  Google Scholar 

  43. Santos AM, Lopes T, Oleastro M, Gato IV, Floch P, Benejat L, Chaves P, Pereira T, Seixas E, Machado J, Guerreiro AS (2015) Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model. Nutrients 7:306–320

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differently regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28:1765–1773

    Article  CAS  PubMed  Google Scholar 

  45. Ireson C, Orr S, Jones DL, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer SM, Jukes R, Williams M, Steward WP, Gescher A (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    CAS  PubMed  Google Scholar 

  46. Lin JK (2007) Molecular targets of curcumin. Adv Exper Med Biol 595:227–243

    Article  Google Scholar 

  47. Zhou H, Christopher SB, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie XQ (2010) Exploiting PubChem for virtual screening. Exp Opin Drug Disc 5:1205–1220

    Article  CAS  Google Scholar 

  49. Hayashi T, Senda M, Morohashi H, Higashi H, Horio M, Kashiba Y, Nagase L, Sasaya D, Shimizu T, Venugopalan N, Kumeta H, Noda NN, Inagaki F, Senda T, Hatakeyama M (2012) Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12:20–33

    Article  CAS  PubMed  Google Scholar 

  50. Ertl P, Rohde B, Selzer PJ (2003) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Med Chem 43:3714–3717

    Article  Google Scholar 

  51. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Del Rev 23:3–25

    Article  CAS  Google Scholar 

  52. Sirajuddin M, Ali S, McKee V, Ullah H (2015) Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4- methoxy-2-nitrophenylamino)-4-oxobutanoic acid. Spectrochim Acta Part A: Mol Bimol Spectr 138:569–578

    Article  CAS  Google Scholar 

  53. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucl Acids Res 33:W299–W302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uppalapati SR, Kingston JJ, Qureshi IA, Murali HS, Batra HV (2013) In silico, in vitro and in vivo analysis of binding affinity between N and C-domains of Clostridium perfringens Alpha toxin. PLoS One 8:e82024

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saha S, Islam MdK, Shilpi JA, Hasan S (2013) Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera’s key metabolite Withaferin A. In Silico Pharmacol 1:1–9

    Article  Google Scholar 

  56. Talambedu U, Kumar GA, Syed L, Prashanth HP, Madhan MT, Veena P, Kumar MS (2014) Identification of anti-Cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pac J Cancer Prev 15:10345–10350

    Google Scholar 

  57. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Canc Res 10:6847–6854

    Article  CAS  Google Scholar 

  58. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Canc Res 14:4491–4499

    Article  CAS  Google Scholar 

  59. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    Article  CAS  PubMed  Google Scholar 

  60. Holder GM, Plummer JL, Ryan AJ (1978) The metabolism and excretion of curcumin [1,7-bis-(4 hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] in the rat. Xenobiotica 8:761–768

    Article  CAS  PubMed  Google Scholar 

  61. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahajanakatti AB, Murthy G, Sharma N, Skariyachan S (2014) Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening. Interdiscip Sci Comput Life Sci 6:13–24

    Article  CAS  Google Scholar 

  63. Blake JF (2000) Chemoinformatics- predicting the physicochemical properties of ‘drug-like’ molecules. Curr Opin Biotechnol 11:104–107

    Article  CAS  PubMed  Google Scholar 

  64. Khan SA, Kumar S, Maqsood AM (2013) Virtual screening of molecular properties and Bioactivity score of Boswellic Acid derivatives search of potent anti-inflammatory lead molecule. Int J Interdiscip Multidisc Stud 1:8–12

    Google Scholar 

  65. Verma A (2012) Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac J Trop Biomed 2:S1735–S1737

    Article  Google Scholar 

  66. Ireson CR, Jones DJL, Orr S, Coughtrie MWH, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomark Prev 14:105–111

    Google Scholar 

  67. Serafim TL, Carvalho FS, Marques MP et al (2011) Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 24:763–774

    Article  CAS  PubMed  Google Scholar 

  68. Srivastava AK, Tewari M, Shukla HS, Roy BK (2015) In silico profiling of the potentiality of curcumin and conventional drugs for CagA oncoprotein inactivation. Arch Pharm 348:548–555

    Article  CAS  Google Scholar 

  69. Kumar SV, Ravunny RK, Chakraborty C (2011) Conserved domains, conserved residues, and surface cavities of C-reactive protein (CRP). Appl Biochem Biotechnol 165:497–505

    Article  CAS  PubMed  Google Scholar 

  70. Pan MH, Huang TM, Lin JK (1998) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabol Depos 27:486–494

    Google Scholar 

Download references

Acknowledgments

We are thankful to the University Grant Commission project for Junior and Senior Research Fellowship (A/C-S01). We also thank School of Biotechnology, Banaras Hindu University, India, for guidance in bioinformatics studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Krishna Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Singh, D. & Roy, B.K. Structural Interactions of Curcumin Biotransformed Molecules with the N-Terminal Residues of Cytotoxic-Associated Gene A Protein Provide Insights into Suppression of Oncogenic Activities. Interdiscip Sci Comput Life Sci 9, 116–129 (2017). https://doi.org/10.1007/s12539-016-0142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0142-2

Keywords

Navigation