Skip to main content
Log in

In-silico characterization of Formin Binding Protein 4 Family of proteins

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Members of the Formin Binding Protein 4 Family or the FNBP4 were indirectly reported to be associated with many of the biological processes. These proteins possess two WW domains. So far there are practically no reports regarding the characterization and classification of the protein by any means. Keeping in mind the importance of the proteins from this FNBP4 family, we have tried an in silico approach to come up with a comprehensive analysis of the proteins. We have analyzed the proteins by considering their sequence conservation, their phylogenetic distributions among the different organisms. We have also investigated the functional properties of the WW domains in the proteins. Finally, we have made an attempt to elucidate the structural details of the domains and predicted the possible modes of their interactions. Our findings show that FNBP4 is eukaryotic in its distribution and follows a trend of evolution where animal and plant homologues have evolved in an independent manner. While the WW domain is the only common motif present across the FNBP4 family of proteins, there are different classes (mainly two) of WW domains that are found among different FNBP4 proteins. Structure function predictions indicate a possible role of FNBP4 in either protein stabilization control or transcript processing. Our study on FNBP4 may therefore open up new avenues to generate new interest in this highly important but largely unexplored class of proteins. Future studies with proteins from this family may answer many important questions of protein-protein interactions in different biologically important processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, M., Friedler, A., Schon, O., Bycroft, M. 2002. The structure of an FF domain from human HYPA/FBP11. J Mol Biol. 323, 411–416.

    Article  PubMed  CAS  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol. 215, 403–410.

    Article  PubMed  CAS  Google Scholar 

  3. Arnold, K., Bordoli, L., Kopp, J., Schwede, T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  4. Aspenström, P. 2010. Formin-binding proteins: modulators of formin-dependent actin polymerization. Biochim Biophys Acta. 1803, 174–182.

    Article  PubMed  CAS  Google Scholar 

  5. Bartolini. F., Gundersen, G.G. 2010. Formins and microtubules. Biochim Biophys Acta. 1803, 164–173.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., Eddy, S.R. 2012. The Pfam protein families database. Nucl. Acids Res. Database Issue 40, D290–D301.

    Article  CAS  Google Scholar 

  7. Bohne. J., Cole, S.E., Suñe, C., Lindman, B.R., Ko, V.D., Vogt, T.F., Garcia-Blanco, M.A. 2000. Expression analysis and mapping of the mouse and human transcriptional regulator CA150. Mamm Genome. 11, 930–933.

    Article  PubMed  CAS  Google Scholar 

  8. Bonet, R., Ruiz, L., Morales, B., Macias, M.J. 2009. Solution structure of the fourth FF domain of yeast Prp40 splicing factor. Proteins. 77, 1000–1003.

    Article  PubMed  CAS  Google Scholar 

  9. Bowie, J.U., Lüthy, R., Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 253, 164–170.

    Article  PubMed  CAS  Google Scholar 

  10. Chalkia, D., Nikolaidis, N., Makalowski, W., Klein, J., Nei, M. 2008. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol. 25, 2717–2733.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Chan, D.C., Bedford, M.T., Leder, P. 1996. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Cole, C., Barber, J.D. Barton, G.J. 2008. The Jpred 3 secondary structure prediction server. Nucl. Acids Res. 35, W197–W201.

    Article  CAS  Google Scholar 

  13. Courtemanche, N., Pollard, T.D. 2012. Determinants of Formin Homology 1 (FH1) domain function in actin filament elongation by formins. J Biol Chem. 287, 7812–7820.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E. 2004. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Dames, S.A., Junemann, A., Sass, H.J., Schönichen, A., Stopschinski, B.E., Grzesiek, S., Faix, J., Geyer, M. 2011. Structure, dynamics, lipid binding, and physiological relevance of the putative GTPase-binding domain of Dictyostelium formin C. J Biol Chem. 286, 36907–36920.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Das, A., Bhattacharya, S., Bagchi, A., Dasgupta, R. 2013. Structural insight into the formin binding property of human formin binding protein 4. J Proteins and Proteomics 4, 93–100.

    Google Scholar 

  17. Dephoure, N., Zhou, C., Villén, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., Gygi, S.P. 2008. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 105, 10762–10767.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Depraetere, V., Golstein, P. 1999. WW domaincontaining FBP-30 is regulated by p53. Cell Death Differ. 6, 883–889.

    Article  PubMed  CAS  Google Scholar 

  19. DeWard, A.D., Eisenmann, K.M., Matheson, S.F., Alberts, A.S. 2010. The role of formins in human disease. Biochim Biophys Acta. 1803, 226–233.

    Article  PubMed  CAS  Google Scholar 

  20. Ester, C., Uetz, P. 2008. The FF domains of yeast U1 snRNP protein Prp40 mediate interactions with Luc7 and Snu71. BMC Biochem. 9, 29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Faix, J., Grosse, R. 2006. Staying in shape with formins. Dev Cell. 10, 693–706.

    Article  PubMed  CAS  Google Scholar 

  22. Finn, R.D, Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Gunesekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.L., Eddy, S.R., Bateman, A. 2010. The Pfam protein families database. Nucl. Acids Res. Database Issue 38, D211–222.

    Article  CAS  Google Scholar 

  23. Gasch, A., Wiesner, S., Martin-Malpartida, P., Ramirez-Espain, X., Ruiz, L., Macias, M.J. 2006. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains. J Biol Chem. 281, 356–364.

    Article  PubMed  CAS  Google Scholar 

  24. Goode, B.L., Eck, M.J. 2007. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem. 76, 593–627.

    Article  PubMed  CAS  Google Scholar 

  25. Görnemann, J., Barrandon, C., Hujer, K., Rutz, B., Rigaut, G., Kotovic, K.M., Faux, C., Neugebauer, K.M., Séraphin, B. 2011. Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. RNA. 17, 2119–2129.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59, 307–321.

    Article  PubMed  CAS  Google Scholar 

  27. Higgs, H.N. 2005. Formin proteins: a domain-based approach. Trends Biochem Sci. 30, 342–353.

    Article  PubMed  CAS  Google Scholar 

  28. Higgs, H.N., Peterson, K.J. 2005. Phylogenetic analysis of the formin homology 2 domain. Mol Biol Cell. 16, 1–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Holm, L., Rosenström, P. 2010. Dali server: conservation mapping in 3D. Nucl. Acids Res. 38, W545–549.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Huang, X., Beullens, M., Zhang, J., Zhou, Y., Nicolaescu, E., Lesage, B., Hu, Q., Wu, J., Bollen, M., Shi, Y. 2009. Structure and function of the two tandem WW domains of the pre-mRNA splicing factor FBP21 (formin-binding protein 21). J Biol Chem. 284, 25375–25387.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Ingham, R.J., Colwill, K., Howard, C., Dettwiler, S., Lim, C.S., Yu, J., Hersi, K., Raaijmakers, J., Gish, G., Mbamalu, G., Taylor, L., Yeung, B., Vassilovski, G., Amin, M., Chen, F., Matskova, L., Winberg, G., Ernberg, I., Linding, R., O’donnell, P., Starostine, A., Keller, W., Metalnikov, P., Stark, C., Pawson, T. 2005. WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol. 25, 7092–7106.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Kao, H.Y., Siliciano, P.G. 1996. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol Cell Biol. 16, 960–967.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., Schwede, T. 2009. The SWISS-MODEL Repository and associated resources. Nucl. Acids Res. 37, D387–D392.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Klippel, S., Wieczorek, M., Schümann, M., Krause, E., Marg, B., Seidel, T., Meyer, T., Knapp, E.W., Freund, C. 2011. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome. J Biol Chem. 286, 38478–38487.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Liou, Y.C., Zhou, X.Z., Lu, K.P. 2011. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci. 36, 501–514.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Liu, R., Linardopoulou, E.V., Osborn, G.E., Parkhurst, S.M. 2010. Formins in development: orchestrating body plan origami. Biochim Biophys Acta. 1803, 207–225.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Lüthy, R., Bowie, J.U., Eisenberg, D. 1992. Assessment of protein models with three-dimensional profiles. Nature. 356, 83–85.

    Article  PubMed  Google Scholar 

  38. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R. 3rd., Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S.P., Elledge, S.J. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316, 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  39. Mayya, V., Lundgren, D.H., Hwang, S.I., Rezaul, K., Wu, L., Eng, J.K., Rodionov, V., Han, D.K. 2009. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46.

    PubMed  Google Scholar 

  40. McFie, P.J., Wang, G.L., Timchenko, N.A., Wilson, H.L., Hu, X., Roesler, W.J. 2006. Identification of a corepressor that inhibits the transcriptional and growtharrest activities of CCAAT/enhancer-binding protein alpha. J Biol Chem. 281, 18069–18080.

    Article  PubMed  CAS  Google Scholar 

  41. Molina, H., Horn, D.M., Tang, N., Mathivanan, S., Pandey, A. 2007. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A. 104, 2199–2204.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Morris, D.P., Greenleaf, A.L. 2000. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem. 275, 39935–39943.

    Article  PubMed  CAS  Google Scholar 

  43. Murphy, M.W., Olson, B.L., Siliciano, P.G. 2004. The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing. Genetics. 166, 53–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Nguyen, Ba. A.N., Pogoutse, A., Provart, N., Moses, A.M. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 10, 202.

    Article  CAS  Google Scholar 

  45. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127, 635–648.

    Article  PubMed  CAS  Google Scholar 

  46. Peitsch, M. C. 1995. Protein modeling by E-mail. Bio/Technology 13, 658–660.

    Article  CAS  Google Scholar 

  47. Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M.S., Davis, F.P., Stuart, A.C., Mirkovic, N., Rossi, A., Marti-Renom, M.A., Fiser, A., Webb, B., Greenblatt, D., Huang, C.C., Ferrin, T.E., Sali, A. 2004. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucl. Acids Res. 32, D217–222.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Ramirez-Espain, X., Ruiz, L., Martin-Malpartida, P., Oschkinat, H., Macias, M.J. 2007. Structural characterization of a new binding motif and a novel binding mode in group 2 WW domains. J Mol Biol. 373, 1255–1268.

    Article  PubMed  CAS  Google Scholar 

  49. Rigbolt, K.T., Prokhorova, T.A., Akimov, V., Henningsen, J., Johansen, P.T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J.V., Blagoev, B. 2011. Systemwide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3.

    PubMed  Google Scholar 

  50. Salah, Z., Alian, A., Aqeilan, R.I. 2012. WW domaincontaining proteins: retrospectives and the future. Front Biosci. 17, 331–348.

    Article  CAS  Google Scholar 

  51. Shimada, M., Saito, M., Katakai, T., Shimizu, A., Ichimura, T., Omata, S., Horigome, T. 1999. Molecular cloning and splicing isoforms of mouse p144, a homologue of CA150. J Biochem. 126, 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, M.J., Kulkarni, S., Pawson, T. 2004. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol Cell Biol. 24, 9274–9285.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Sudol, M., Chen, H.I., Bougeret, C., Einbond, A., Bork, P. 1995. Characterization of a novel proteinbinding module the WW domain. FEBS Lett. 369, 67–71.

    Article  PubMed  CAS  Google Scholar 

  54. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kuma, r S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 28, 2731–2739.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Young, K.G., Copeland, J.W. 2010. Formins in cell signaling. Biochim Biophys Acta. 1803, 183–190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angshuman Bagchi or Rakhi Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bhattacharya, S., Bagchi, A. et al. In-silico characterization of Formin Binding Protein 4 Family of proteins. Interdiscip Sci Comput Life Sci 7, 43–64 (2015). https://doi.org/10.1007/s12539-013-0040-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0040-9

Key words

Navigation