Skip to main content
Log in

A branch-and-bound algorithm for instrumental variable quantile regression

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

This paper studies a statistical problem called instrumental variable quantile regression (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key variables in the problem, which are valid asymptotically for increasing sample size. We compare our method with two well known global solvers, one of which requires the computed bounds. On random instances, our algorithm performs well in terms of both speed and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming. J. Optim. Theory Appl. 38(2), 353–370 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bai, L., Mitchell, J.E., Pang, J.S.: On convex quadratic programs with linear complementarity constraints. Comput. Optim. Appl. 54(3), 517–554 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belloni, A., Chen, D., Chernozhukov, V., Hansen, C.: Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80(6), 2369–2429 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai, M.C., Duin, C.W., Yang, X.G., Zhang, J.Z.: The partial inverse minimum spanning tree problem when weight increase is forbidden. Eur. J. Oper. Res. 188(2), 23–28 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, C.: An introduction to quantile regression and QUANTREG procedure. In: 30th SAS user group international conference. SAS institute INC, Philadelphia (2005)

  7. Chernozhukov, V., Hansen, C.: Instrumental variable quantile regression: a robust inference approach. J. Econom. 142(1), 379–398 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Couenne, a solver for non-convex MINLP problems. Technical report, http://www.coin-or.org/Couenne/

  9. Eckstein, J.: Parallel branch-and-bound algorithms for general mixed integer programming on the cm-5. SIAM J. Optim. 4, 794–814 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Forrest, J.J.H., Hirst, J.P.H., Tomlin, J.A.: Practical solution of large scale mixed integer programming problems with umpire. Manag. Sci. 20, 736–773 (1974)

    Article  MATH  Google Scholar 

  11. Gabriel, S.A., Gareia-Bertrand, R., Sahakij, P., Concjo, A.J.: A practical approach to approximate bilinear functions in mathematical programming problems by using Schur’s decomposition and SOS type 2 variables. J. Oper. Res. Soc. 57(8), 995–1004 (2006)

    Article  MATH  Google Scholar 

  12. Gentry, S.: Partial inverse linear programming. Technical Report LIDS-P-2532, Massachusetts Inst. Tech., Lab for Information and Decision Systems (2001)

  13. Glankwamdee, W.: Topics in Branch and Bound on Computational Grids. ProQuest (2008)

  14. Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods, and results. J. Comb. Optim. 8(3), 329–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horowitz, J., Lee, S.: Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75(4), 1191–1208 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19(1), 445–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001)

    Article  Google Scholar 

  18. Lai, T.C., Orlin, J.B.: The complexity of preprocessing. Technical report, Sloan School of Management, MIT (2003)

  19. Lee, Y.C., Pang, J.S., Mitchell, J.E.: An algorithm for global solution to bi-parametric linear complementarity constrained linear programs. SIAM J. Optim. 62(2), 263–297 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, G.S., Zhang, J.Z.: A new branch-and-bound algorithm for solving quadratic programs with linear complementarity constraints. J. Comput. Appl. Math. 146(1), 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mangasarian, O.L.: Regularized linear programs with equilibrium constraints. In: Fukushima, M., Qi, L. (eds.) Reformulation-nonsmooth, piecewise smooth, semismooth and smoothing methods, pp. 259–268. Kluwer Academic Publisher, Dordrecht (1998)

    Chapter  Google Scholar 

  22. Mitchell, J.E., Pang, J.S., Yu, B.: Obtaining tighter relaxations of mathematical programs with complementarity constraints. In Terlaky, T., Curtis, F. (eds) Modeling and Optimization: Theory and Applications, volume 21 of Springer Proceedings in Mathematics and Statistics, chapter 1. pp. 1–23. Springer, New York (2012)

  23. Montgomery, D., Peck, E., Vining, G.: Introduction to Linear Regression Analysis. Wiley, New York (1982)

    MATH  Google Scholar 

  24. Sabo, K., Scitovski, R.: The best least absolute deviations line-properties and two efficient methods for its derivation. Anziam J. 50, 185–198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sherali, H.D., Alameddine, A.: A new reformulation—linearization technique for bilinear programming problems. J. Glob. Optim. 2(4), 379–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vandenbussche, D., Nemhauser, G.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, Q.: Partial inverse most unbalanced spanning tree problem. Przeglad Elektrotechniczny 88(1b), 111–114 (2012)

    Google Scholar 

  28. Yang, X.G.: Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO—Oper. Res. 35(1), 117–126 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Yang, X.G., Zhang, J.Z.: Inverse sorting problem by minimizing the total weighted number of changes and partial inverse sorting problems. Comput. Optim. Appl. 36(1), 55–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, X.G., Zhang, J.Z.: Partial inverse assignment problems under \(l_1\) norm. Oper. Res. Lett. 35(1), 23–28 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang, J., Liu, Z.: Calculating some inverse linear programming problems. J. Comput. Appl. Math. 72(2), 215–434 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the participation and contribution of Alexandre Belloni, who supplied the IVQR problem as an interesting global, quadratic problem. He also provided the code to generate instances of the IVQR problem consistent with the statistics literature. The authors also express their sincere thanks to two anonymous referees and one anonymous technical editor for their helpful and insightful comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglin Xu.

Appendices

Appendix A Proof of Lemma 1

Proof

Since \(Ax^* + \epsilon = b\), we have from the triangle inequality that \(\Vert \epsilon \Vert _\infty \le \Vert b\Vert _\infty + \Vert Ax^* \Vert _\infty \) and \(\Vert Ax^*\Vert _\infty \le \Vert b\Vert _\infty + \Vert \epsilon \Vert _\infty \). So the event \(\Vert \epsilon \Vert _\infty > C \Vert b\Vert _\infty \) implies

$$\begin{aligned} \Vert \epsilon \Vert _\infty > C \Vert b\Vert _\infty \ge C (\Vert \epsilon \Vert _\infty - \Vert Ax^*\Vert _\infty ) = C \Vert \epsilon \Vert _\infty - C\Vert Ax^*\Vert _\infty \end{aligned}$$

and

$$\begin{aligned} \Vert \epsilon \Vert _\infty > C \Vert b\Vert _\infty \ge C (\Vert Ax^*\Vert _\infty - \Vert \epsilon \Vert _\infty ) = C \Vert Ax^*\Vert _\infty - C\Vert \epsilon \Vert _\infty , \end{aligned}$$

which together imply

$$\begin{aligned} \frac{C}{C+1}< \frac{\Vert \epsilon \Vert _\infty }{\Vert Ax^*\Vert _\infty } < \frac{C}{C-1}. \end{aligned}$$

This proves the first bound. To prove the second, we note that, by definition,

$$\begin{aligned} \Vert \epsilon \Vert _\infty> C \Vert b\Vert _\infty \Longleftrightarrow \max _{i=1}^m |\epsilon _i| > C \max _{k=1}^m \left| a_k^{\text {T}} x^* + \epsilon _k\right| , \end{aligned}$$

and so \(\Vert \epsilon \Vert _\infty > C \Vert b\Vert _\infty \) implies that \(|\epsilon _i| > C \max _{k=1}^m |a_k^{\text {T}} x^* + \epsilon _k|\) holds for at least one specific i. Hence,

$$\begin{aligned} P\left( \Vert \epsilon \Vert _\infty> C \Vert b\Vert _\infty \right)&\le \sum _{i=1}^m P\left( |\epsilon _i|> C\max _{k=1}^m \left| a_k^{\text {T}}x^* + \epsilon _k\right| \right) \nonumber \\&\le m \max _{i=1}^m P\left( |\epsilon _i| > C\max _{k} \left| a_k^{\text {T}}x^* + \epsilon _k\right| \right) . \end{aligned}$$
(14)

Next, we claim \(|a_k^{\text {T}} x^* + \epsilon _k| \ge |\epsilon _k| \cdot \mathbbm {1}\{\epsilon _k a_k^{\text {T}} x^* \ge 0 \}\) for each k. If \(\epsilon _k a_k^{\text {T}} x^* < 0\), this is certainly true. Otherwise, if \(\epsilon _ka_k^{\text {T}}x^* \ge 0\), then \(\epsilon _k\) and \(a_k^{\text {T}}x^*\) have the same (possibly zero) signs and hence \(|a_k^{\text {T}}x^* + \epsilon _k| \ge |\epsilon _k|\). Thus,

$$\begin{aligned} |\epsilon _i|> C\max _{k=1}^m \left| a_k^{\text {T}}x^* + \epsilon _k\right| \Longrightarrow |\epsilon _i| > C \max _{k=1}^m \left\{ |\epsilon _k| \cdot \mathbbm {1}\left\{ \epsilon _k a_k^{\text {T}} x^* \ge 0\right\} \right\} \end{aligned}$$

and so

$$\begin{aligned} P\left( |\epsilon _i|> C\max _{k=1}^m \left| a_k^{\text {T}}x^* + \epsilon _k\right| \right) \le P\left( |\epsilon _i| > C \max _{k=1}^m \left\{ |\epsilon _k| \cdot \mathbbm {1}\left\{ \epsilon _k a_k^{\text {T}} x^* \ge 0\right\} \right\} \right) . \end{aligned}$$
(15)

Combining inequalities (14) and (15), we achieve the second bound. \(\square \)

Appendix B Proof of Lemma 2

Proof

The first two-sided inequality is a standard fact about the normal distribution. For the last inequality, we have

$$\begin{aligned} P \left( \max _{1 \le p \le q} Z_p \le \theta \sigma \right) = \Pi _{p=1}^q P(Z_p \le \theta \sigma ) = (1 - P(Z > \theta \sigma ))^q. \end{aligned}$$

By the first part of the lemma and the standard fact that \(0< x < 1\) and \(a > 0\) imply \((1-x)^a \le \exp (-ax)\),

$$\begin{aligned} (1 - P(Z > \theta \sigma ))^q&\le \left( 1 - \frac{1}{2\theta } \cdot \epsilon (\theta ) \right) ^q \\&\le \exp \left( -\frac{q}{2\theta } \cdot \epsilon (\theta ) \right) . \end{aligned}$$

Now substituting the definition of \(\epsilon (\theta )\) and \(\theta = \sqrt{\log (q)}\), we see

$$\begin{aligned} \exp \left( -\frac{q}{2\theta } \cdot \epsilon (\theta ) \right)&= \exp \left( -\frac{q}{2\theta } \cdot \frac{1}{\sqrt{2\pi }} \exp (-\log (q)/2) \right) \\&= \exp \left( -\frac{q}{2\theta } \cdot \frac{1}{\sqrt{2\pi }} \, q^{-1/2} \right) \\&= \exp \left( -\frac{ \sqrt{q}}{2\sqrt{\log (q)}} \cdot \frac{1}{\sqrt{2\pi }} \right) \\&\le \exp \left( -q^{1/4}\right) , \end{aligned}$$

where the last inequality follows from the assumption that \(q/(8\pi \log (q)) \ge \sqrt{q}\). This proves the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Burer, S. A branch-and-bound algorithm for instrumental variable quantile regression. Math. Prog. Comp. 9, 471–497 (2017). https://doi.org/10.1007/s12532-017-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-017-0117-2

Keywords

Mathematics Subject Classification

Navigation