Skip to main content
Log in

Global optimization of nonconvex problems with multilinear intermediates

Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We consider global optimization of nonconvex problems containing multilinear functions. It is well known that the convex hull of a multilinear function over a box is polyhedral, and the facets of this polyhedron can be obtained by solving a linear optimization problem (LP). When used as cutting planes, these facets can significantly enhance the quality of conventional relaxations in general-purpose global solvers. However, in general, the size of this LP grows exponentially with the number of variables in the multilinear function. To cope with this growth, we propose a graph decomposition scheme that exploits the structure of a multilinear function to decompose it to lower-dimensional components, for which the aforementioned LP can be solved very efficiently by employing a customized simplex algorithm. We embed this cutting plane generation strategy at every node of the branch-and-reduce global solver BARON, and carry out an extensive computational study on quadratically constrained quadratic problems, multilinear problems, and polynomial optimization problems. Results show that the proposed multilinear cuts enable BARON to solve many more problems to global optimality and lead to an average 60 % CPU time reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belotti, P.: COUENNE: A User’s Manual. Lehigh University, Technical report (2009)

  4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, UK (1997)

    Google Scholar 

  5. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crama, Y.: Recognition problems in polynomials in \(0{-}1\) programming. Math. Program. 44, 139–155 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crama, Y.: Concave extensions for nonlinear \(0{-}1\) maximization problems. Math. Program. 61, 53–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolan, E., More, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63. ACM, New York (1974)

  11. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT 7.2.4: A FORTRAN Package for Large-Scale Nonlinear Programming. Technical report, University of California, San Diego and Stanford University, CA (2008)

  12. Gray, F.: Pulse code communication. U.S. Patent No. 2,632,058 (1953)

  13. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, p. 28. ACM, New York (1995)

  14. Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Commun. ACM 16, 372–378 (1973)

    Article  Google Scholar 

  15. IBM. CPLEX Optimizer (2011). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    Article  MATH  Google Scholar 

  18. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luedtke, J., Namazifar, M., Linderoth, J.T.: Some results on the strength of relaxations of multilinear functions. Math. Program. 136, 325–351 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardolos, P.M. (eds.) Frontiers in Global Optimization, vol. 103, pp. 327–352. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  22. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29, 125–155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Murtagh, B.A., Saunders, M.A.: MINOS 5.5 User’s Guide. Technical Report SOL 83–20R, Systems Optimization Laboratory, Department of Operations Research, Stanford University, CA (1995)

  25. Namazifar, M.: Strong Relaxations and Computations for Multilinear Programming. PhD thesis, Department of Industrial and Systems Engineering, University of Wisconsin–Madison (2011)

  26. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sahinidis, N.V., Tawarmalani, M.: BARON 10.3: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2012)

  30. Saunders, M.A.: LUMOD: Fortran software for updating dense LU factors. http://www.stanford.edu/group/SOL/software/lumod.html

  31. Sherali, H.D.: A constructive proof of the representation theorem for polyhedral set based on fundamental definitions. Am. J. Math. Manag. Sci. 7, 253–270 (1987)

    MATH  MathSciNet  Google Scholar 

  32. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22, 245–270 (1997)

    MATH  MathSciNet  Google Scholar 

  33. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tawarmalani, M.: Inclusion certificates and simultaneous convexification of functions (2010). http://www.optimization-online.org/DB_HTML/2010/09/2722.html

  35. Tawarmalani, M., Richard, J.-P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124, 481–512 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tawarmalani, M., Richard, J.-P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. (2012). doi:10.1007/s10107-012-0581-4

    Google Scholar 

  37. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  38. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis.

Additional information

This research was supported in part by National Science Foundation award CMII-1030168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Khajavirad, A., Sahinidis, N.V. et al. Global optimization of nonconvex problems with multilinear intermediates. Math. Prog. Comp. 7, 1–37 (2015). https://doi.org/10.1007/s12532-014-0073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-014-0073-z

Keywords

Mathematics Subject Classification

Navigation