Skip to main content
Log in

A Newton’s method for the continuous quadratic knapsack problem

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after \(O(n)\) iterations with overall arithmetic complexity \(O(n^2)\). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, and is faster than the state-of-the-art algorithms based on median finding, variable fixing, and secant techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods for convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG—software for convex-constrained optimization. ACM Trans. Math. Softw. 27(3), 340–349 (2001)

    Article  MATH  Google Scholar 

  3. Bitran, G.R., Hax, A.C.: Disaggregation and resource allocation using convex knapsack problems with bounded variables. Manag. Sci. 27(4), 431–441 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bretthauer, K., Shetty, B.: Quadratic resource allocation with generalized upper bounds. Oper. Res. Lett. 20(2), 51–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bretthauer, K.M., Shetty, B., Syam, S.: A branch- and bound-algorithm for integer quadratic knapsack problems. ORSA J. Comput. 7, 109–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brucker, P.: An \(O(n)\) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3(3), 163–166 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  8. Calamai, P.H., Moré, J.J.: Quasi-Newton updates with bounds. SIAM J. Numer. Anal. 24(6), 1434–1441 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cosares, S., Hochbaum, D.S.: Strongly polynomial algorithms for the quadratic transportation problem with a fixed number of sources. Math. Oper. Res. 19(1), 94–111 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, T.A., Hager, W.W., Hungerford, J.T.: The separable convex quadratic knapsack problem. Working paper (2013)

  12. Ferris, M.C., Munson, T.S.: Semismooth support vector machines. Math. Program. 101, 185–204 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Gonzalez-Lima, M.D., Hager, W.W., Zhang, H.: An affine-scaling interior-point method for continuous knapsack constraints with application to support vector machines. SIAM J. Optim. 21(1), 361–390 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Held, M., Wolfe, Ph. Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974)

  15. Helgason, R., Kennington, J., Lall, H.: A polynomially bounded algorithm for a singly constrained quadratic program. Math. Program. 18(1), 338–343 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hochbaum, D.S., Hong, S.-P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69(1–3), 269–309 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Kiwiel, K.C.: On Floyd and Rivest’s SELECT algorithm. Theor. Comput. Sci. 347(1–2), 214–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kiwiel, K.C.: On linear-time algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 134(3), 549–554 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kiwiel, K.C.: Breakpoint searching algorithms for the continuous quadratic knapsack problem. Math. Program. 112(2), 473–491 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kiwiel, K.C.: Variable fixing algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 36(3), 445–458 (2008)

    Article  MathSciNet  Google Scholar 

  21. Maculan, N., Santiago, C.P., Macambira, E.M., Jardim, M.H.C.: An \(O(n)\) algorithm for projecting a vector on the intersection of a hyperplane and a box in \(\mathbb{R}^n\). J. Optim. 117(3), 553–574 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  23. Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of \(\mathbb{R}^n\). J. Optim. Theory Appl. 50(1), 195–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nielsen, S.S., Zenios, S.A.: Massively parallel algorithms for singly constrained convex programs. INFORMS J. Comput. 4(2), 166–181 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Program. 46(1–3), 321–328 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Robinson, A.G., Jiang, N., Lerme, C.S.: On the continuous quadratic knapsack problem. Math. Program. 55(1–3), 99–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Saito, M., Matsumoto, M.: SIMD-oriented fast mersenne twister: a 128-bit pseudorandom number generator. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer, Berlin (2008)

    Chapter  Google Scholar 

  28. Shetty, B., Muthukrishnan, R.: A parallel projection for the multicommodity network model. J. Oper. Res. Soc. 41(9), 837–842 (1990)

    Article  MATH  Google Scholar 

  29. Ventura, J.A.: Computational development of a lagrangian dual approach for quadratic networks. Networks 21(4), 469–485 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. S. Silva.

Additional information

This work was supported by Fondecyt 1100046 and Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F, PRONEX-Optimization (PRONEX-CNPq/FAPERJ E-26/171.510/2006-APQ1), CNPq (Grant 305740/2010-5), and FAPESP (Grant 2012/20339-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cominetti, R., Mascarenhas, W.F. & Silva, P.J.S. A Newton’s method for the continuous quadratic knapsack problem. Math. Prog. Comp. 6, 151–169 (2014). https://doi.org/10.1007/s12532-014-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-014-0066-y

Keywords

Mathematics Subject Classification (2010)

Navigation