Skip to main content
Log in

Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper proposes an architecture and learning algorithms for a cascade neo-fuzzy system based on pools of extended neo-fuzzy neurons. The proposed system is different from existing cascade systems in its capability to operate in an online mode, which allows it to work with non-stationary and stochastic non-linear chaotic signals that come in the form of data streams. A new pool optimization procedure is introduced. Compared to conventional analogues, the proposed system provides computational simplicity and possesses both tracking and filtering capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal C (2007) Data streams: models and algorithms (advances in database systems). Springer, New York

    Book  Google Scholar 

  • Angelov P (2013) Autonomous learning systems: from data streams to knowledge in real-time. Wiley, Chichester

    Google Scholar 

  • Angelov P, Filev D (2004) An approach to online identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 34(1):484–498

    Article  Google Scholar 

  • Angelov P, Lughofer E (2008) Data-driven evolving fuzzy systems using ets and flexfis: comparative analysis. Int J Gen Syst 37(1):45–67

    Article  MATH  Google Scholar 

  • Angelov P, Zhou X (2006) Evolving fuzzy systems from data streams in real-time. In: 2006 international symposium on evolving fuzzy systems, pp 29–35

  • Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems: methodology and applications. Wiley, New York

    Book  Google Scholar 

  • Arrow K, Hurwicz L, Uzawa H (1958) Studies in linear and non-linear programming. Stanford University Press, Stanford

    MATH  Google Scholar 

  • Avedjan E, Barkan G, Levin I (1999) Cascade neural networks. Avtom i telemekhanika 3:38–55

    MathSciNet  Google Scholar 

  • Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. IOS Press, Amsterdam

    MATH  Google Scholar 

  • Bodyanskiy Y (2005) Computational intelligence techniques for data analysis. Lect Notes Informat 72:15–36

    Google Scholar 

  • Bodyanskiy Y, Kolodyazhniy V (2010) Cascaded multi-resolution spline-based fuzzy neural network. In: Int. symp. on evolving intelligent systems, pp 26–29

  • Bodyanskiy Y, Pliss I (1990) Adaptive generalized forecasting of multivariate stochastic signals. In: Latvian sign. proc. int. conf., vol 2, pp 80–83

  • Bodyanskiy Y, Viktorov Y (2009a) The cascaded neo-fuzzy architecture and its on-line learning algorithm. Intell Process 9:110–116

    Google Scholar 

  • Bodyanskiy Y, Viktorov Y (2009b) The cascaded neo-fuzzy architecture using cubic-spline activation functions. Inf Theor Appl 16(3):245–259

  • Bodyanskiy Y, Vorobyov S (2000) Recurrent neural network detecting changes in the properties of nonlinear stochastic sequences. Autom Remote Control 61(7):1113–1124

    Google Scholar 

  • Bodyanskiy Y, Madjarov N, Pliss I (1983) Adaptive forecasting of nonstationary processes. Avtom I Izchislitelna Tekh 6:5–12

    Google Scholar 

  • Bodyanskiy Y, Pliss I, Solovyova T (1986) Multistep optimal predictors of multidimensional non-stationary stochastic processes. Dokl AN USSR A 12:47–49

    Google Scholar 

  • Bodyanskiy Y, Pliss I, Solovyova T (1989) Adaptive generalized forecasting of multidimensional stochastic sequences. Dokl AN USSR A 9:73–75

    Google Scholar 

  • Bodyanskiy Y, Stephan A, Vorobyov S (1999) Algorithm for adaptive identification of dynamical parametrically nonstationary objects. J Comput Syst Sci Int 38(1):14–38

    Google Scholar 

  • Bodyanskiy Y, Cichocki A, Vorobyov S (2001) An adaptive noise cancellation for multisensory signals. Fluct Noise Lett 1(1):13–24

    Google Scholar 

  • Bodyanskiy Y, Kokshenev I, Kolodyazhniy V (2003) An adaptive learning algorithm for a neo-fuzzy neuron. In: Int. conf. of European union soc. for fuzzy logic and technology, pp 375–379

  • Bodyanskiy Y, Tyshchenko O, Kopaliani D (2015a) An extended neo-fuzzy neuron and its adaptive learning algorithm. Int J Intell Syst Appl (IJISA) 7(2):21–26

    Google Scholar 

  • Bodyanskiy Y, Tyshchenko O, Kopaliani D (2015b) A hybrid cascade neural network with an optimized pool in each cascade. Soft Comput 19(12):3445–3454

    Article  Google Scholar 

  • Chan L, Fallside F (1987) An adaptive learning algorithm for backpropagation networks. Comput Speech Lang 2:205–218

    Article  Google Scholar 

  • Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Teubner, Stuttgart

    MATH  Google Scholar 

  • Fahlman S, Lebiere C (1990) The cascade-correlation learning architecture. Adv Neural Inf Process Syst 2:524–532

    Google Scholar 

  • Fister I, Fister I (2015) Adaptation and hybridization in computational intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  • Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Holmes G, Veitch A (1991) A modified quickprop algorithm. Neural Comput 3:310–311

    Article  Google Scholar 

  • Jang JSR, Sun CT, Muzutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Juang CF, Lin CT (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32

    Article  Google Scholar 

  • Kacprzyk J, Pedrycz W (2015) Springer handbook of computational intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kasabov N (2001) Ensembles of efunns: an architecture for a multimodule classifier. In: Proc. int. conf. on fuzzy systems, vol 3, pp 1573–1576

  • Kasabov N (2003) Evolving connectionist systems. Springer, London

    Book  MATH  Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach. Springer, London

    MATH  Google Scholar 

  • Kasabov N, Song Q (2002) Denfis: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154

  • Kruse R, Borgelt C, Klawonn F, Moewes C, Steinbrecher M, Held P (2013) Computational intelligence. A methodological introduction. Springer, London

    MATH  Google Scholar 

  • Kuremoto T, Obayashi M, Kobayashi K (2005a) Forecasting time series by sofnn with reinforcement learning. In: Advances in intelligent computing, international conference on intelligent computing (ICIC’05), Hefei. Proceedings, Part I, pp 1085–1094

  • Kuremoto T, Obayashi M, Kobayashi K (2005b) Nonlinear prediction by reinforcement learning. In: Lecture notes in computer science, pp 1085–1094

  • Ljung L (1999) System identification: theory for the user. Prentice Hall PTR, Upper Saddle River

    Book  MATH  Google Scholar 

  • Lughofer E (2008) Flexfis: a robust incremental learning approach for evolving TS fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–1410

    Article  Google Scholar 

  • Lughofer E (2011) Evolving fuzzy systems and methodologies, advanced concepts and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Mumford C, Jain L (2009) Computational intelligence. Collaboration, fusion and emergence. Springer, Berlin

    MATH  Google Scholar 

  • Pratama M, Anavatti S, Angelov P, Lughofer E (2014) Panfis: a novel incremental learning machine. IEEE Trans Neural Netw Learn Syst 25(1):55–68

    Article  Google Scholar 

  • Prechelt L (1997) Investigation of the cascor family of learning algorithms. Neural Netw 10:885–896

    Article  Google Scholar 

  • Rong NJ, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9):1260–1275

    Article  MathSciNet  MATH  Google Scholar 

  • Rutkowski L (2008) Computational intelligence. Methods and techniques. Springer, Berlin

    Book  MATH  Google Scholar 

  • Schalkoff R (1997) Artificial neural networks. The McGraw-Hill Comp., New York

    MATH  Google Scholar 

  • Shawkat AA, Xiang Y (2009) Dynamic and advanced data mining for progressing technological development: innovations and systemic approaches. Hershey, New York

    Google Scholar 

  • Silva FM, Almeida LB (1990) Speeding up backpropagation. In: Eckmiller R (ed) Advanced neural computers. North-Holland, pp 151–158

  • Wang L (1994) Adaptive fuzzy systems and control. Design and stability analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Wang L, Mendel J (1993) Fuzzy basis functions, universal approximation and orthogonal least squares learning. IEEE Trans Neural Netw 3:807–814

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii K. Tyshchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyanskiy, Y.V., Tyshchenko, O.K. & Kopaliani, D.S. Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks. Evolving Systems 7, 107–116 (2016). https://doi.org/10.1007/s12530-016-9149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-016-9149-5

Keywords

Navigation